Work groups meeting

INF5040 (Open Distributed Systems)

Sabita Maharjan

sabita@ifi.uio.no

Department of Informatics

University of Oslo
August 31, 2009

mailto:amirhost@ifi.uio.no

Meeting Plan

 31.08.09

— Introduction
— Lecture: Java Distributed Computing-RMI

e 04.09.09
— Lecture: Java Distributed Computing-EJB
— Lecture: JEE Application Servers-JBoss

 07.09.09

e Lecture on “Java Distribution Patterns”
e Assignment 1/Group formation

Z
M
Ul
o
5
o
I
()]
-
o
c
©
<
™
0]
=
>
oQ
(%)

g
a =
G =
L= i
e

0180 40
ALISHAAIND

Meeting Plan

* 07.09.09-05.10.09

— Working on programming exercise

— TA will be available during meeting time for
possible questions regarding assighment 1

e 05.10.09
— Submission of Assignment 1

Z
M
Ul
o
5
o
I
()]
-
o
c
©
<
™
0]
=
>
oQ
(%)

— Assignment 2/ Group formation

g
a =
G =
L= i
e

0180 40
ALISHAAIND

Meeting Plan

* 05.10.09---.11.09

— Working on programming exercise

— TA will be available during meeting time for
possible questions regarding assighment 2

Z
Tl
Ul
o
=
o
|
0
=S
o
c
©
<
®
@
(=g
S
a
wn

AT

07150 40 ﬁ S
ALISHIAINA B0 &

Assignment 1

 Implementation of a simple Java
distributed application (will be described
07.09.2009)

 Technologies and Tools: J2EE Specifications
(Servlet, JSP, EJB, JDBC, ...), Jboss,
Distribution patterns

 Deadline: Monday, 05.10.2009

Z
M
Ul
o
5
o
I
()]
-
o
c
©
<
™
0]
=
>
oQ
(%)

Assignment 2

e Will be announced on 05.10.20009.

=
L
Ul
o
=
o
|
0
-
o
c
©
<
®
@
Gl
S
a
wn

Regarding both assignments

e 2 or 3 students: one group

=2
i
Ul
(@]
g
o
I
()
-
(@]
c
o
<
®
oo}
.
S
oQ
wn

 Both programming assignments must be
approved to be eligible to take the final
exam

 For those who took this subject last fall;

— |f you were eligible to take the exam then, i.e.,
you got both the programming assignment and
your presentation approved, you do NOT have
to do them again this semester!.

AT
- =
= !ﬁ 2
o Ry &

U

0180 40
ALISHAAIND

Java Distributed Computing-
RMI

Z
Tl
Ul
o
=
o
|
0
=
o
c
©
<
®
@
(=g
S
a
wn

Distributed Objects

e Definition:

=2
M
Ul
(@]
g
o
I
()
-
(@]
c
o
<
®
oo}
.
S
oQ
wn

software modules that are designed to work
together, but reside either in multiple computers
connected via a network or in different processes
inside the same computer. One object sends a
message to another object in a remote machine
or process to perform some task. The results are
sent back to the calling object.

ST,

0TS0 40 £ &4
ALISHAAIND '-q, _,f

Distributed Objects

Why to distribute objects?

=
i
Ul
o
5
o
I
()]
=S
o
c
©
<
D
D
=
-
0Q
(V2]

[——]
——
[———
[7 I N =1
[—]

|

=

* |

10

Z
M
Ul
o
5
o
I
()]
-
o
c
©
<
™
0]
=
>
oQ
(%)

g
a =
G =
L= i
e

0180 40
ALISHAAIND

Distributed Objects

Why to distribute objects?

 Objective: To let any object reside anywhere in the
network, and allow an application to interact with these
objects exactly the same way as they do with a local
object.

e Reduces design overhead, and makes a large system
easier to maintain in the long run.

11

Z
L
U1
o
=
o
I
[0
=S
o
c
o
<
)
)
Gl
S
G
wn

0180 40
ALISHAAIND

Architecture for distributed object

systems

Server Interface for
the class of objects
generated by an

Client Interface for
the class of objects
generated by an
object interface
specification

object interface
specification

Network

qnis

_,| Remote ||/
«——| Object

l
HQEIENS

Naming ||/
Service

12

Z
M
Ul
o
5
o
I
()]
-
o
c
©
<
™
0]
=
>
oQ
(%)

T T3
AN
- ¥
5 =
X F-
e

0180 40
ALISHAAIND

Implementations

CORBA

— A standard defined by the Object Management Group
(OMG)

DCOM

— Microsoft solution for distribution: an extension of the
Component Object Model (COM) that allows COM
components to communicate across network
boundaries.

.NET Remoting

— Part of .Net Framework to interact with one another
across application domains

RMI
— Sun scheme for distributed objects

13

=2
i
Ul
(@]
g
o
I
()
-
(@]
c
o
<
®
oo}
.
S
oQ
wn

LTEER.
B =
= !ﬁ 2
Lo -5 &

BT S

0180 40
ALISHIAIND

CORBA (Common Object Request
Broker Adapter)

A generic framework for building systems involving
distributed objects

Enables software components written in different
computer languages and running on multiple
computers to work together (platform and language
independent)

— The stub and skeleton need not be compiled in the
same programming language

Any agent in a CORBA system can act as both a client

and a server of remote objects

CORBA 1.1 wasreleased in 1991

14

Z
M
Ul
o
5
o
I
()]
-
o
c
©
<
™
0]
=
>
oQ
(%)

T T3
AN
- ¥
5 H
X F-
e

0180 40
ALISHAAIND

RMI (Remote Method Invocation)

Specification by Sun for making remote method
invocations on Java objects from Java clients

Specific to Java
— not language independent
— provides features because it is a Java-only system

Java Standard Edition (J2SE) comes with
implementation of RMI

Part of Java since 1.1 (1997)

15

RMI Scenario

Object
Interface
. v

Z
L
U1
o
=
o
I
[0
-
o
c
o
<
)
)
Gl
S
qa
wn

qnis

(o 0.

Object

HQEIENTS

Server

e A A
RMI

Registry e

AT

07150 40 ﬂ S
ALISHIAINA B0 &

16

=2
i
Ul
(@]
g
o
I
()
-
(@]
c
o
<
®
oo}
.
S
0Q
wn

AT
P =
i g 5
o Ry &
S B

0180 40
ALISHAAIND

4.
5.

RMI Deployment

Create remote object interface
Implement the interface on the server side

Create client stub and server skeleton for the
object

1. The interface and the server implementation are
compiled using javac compiler

2. The linkage is generated from the client through the
RMI registry to the object implementation

Register remote object and client application
Launch server program and client program

17

Z
M
Ul
o
5
o
I
)
-
@)
c
©
<
)
)
-
>
0q
wn

0150 40 £ 44%
ALISHIAINN & BF &

Example: Bank Account

The interface for the remote object

¢ Create RemOte |nterfaCE: should be written as extending the

public interface BankAccount

public Integer getBalance()

public void makeDeposit(Integer)

public void makeWithdrawal(Integer)

java.rmi.Remote interface

All methods in the interface

must be declared as throwing
the java.rmi.RemoteException.

The RemoteException is the base
class for many of the exceptions

that RMI defines for remote
operations

18

Example: Bank Account

 Implement the Interface

mplements

public class BankAccountimpl

BankAccount {
The server implements the object’s interface and

private Integer balance; extends the java.rmi.server.UnicastRemoteObject class

Z
Tl
Ul
o
=
o
|
0
=
o
c
©
<
®
@
Gl
S
a
wn

public Integer getBalance() throws RemoteException {
return balance;

}

public void makeDeposit(Integer amount) throws RemoteException {
balance = balance.add(amount);

}

public void makeWithdrawal(Integer amount) throws RemoteException {
balance = balance.subtract(amount);

s

}

}

0180 40
ALISHAAIND

19

=2
i
Ul
(@]
g
o
I
()
-
(@]
c
o
<
®
oo}
.
S
0Q
wn

LTET,
= kS
5 E
%, F-
Pl

0180 40
ALISHAAIND

Stubs and Skeletons

 Generate client stub and server skeleton for
the object.
— using the RMI compiler: rmic

 Takes an implementation class file and
generates a pair of stub and skeleton class
files

— Appends the postfixes “ Stub” and “_Skel” to
the implementation class name

20

The RMI Registry

A simple mapping of text names to server objects
(Listens for requests on a default port is 1099)

Z
M
Ul
o
5
o
I
()]
-
o
c
©
<
™
0]
=
>
oQ
(%)

 An RMI registry can be started on a host by using rmiregistry
command

e Object implementations can be registered using
java.rmi.Naming class for interacting with registry

— Servers
e Register objects
e Naming.bind() or Naming.rebind()
— Clients
e Lookup objects on the Naming interface

T T3
AN
- ¥
5 H
X F-
e

0180 40
ALISHAAIND

e Naming.lookup()

21

Example: Bank Account

e Register Server Object

=
L
Ul
o
=
o
|
0
-
o
c
©
<
®
@
Gl
S
a
wn

BankServer.java

public static void main (String[] argv) {
tr

System.out.printin (“Bank Server is ready.");

} catch (Exception e) {
System.out.printin ("Bank Server failed: " + e);

A0,

0180 40 £ ‘,!.ﬁ.
ALISHIAIND o

Example: Bank Account

e Register client Application

BankClient.java

Z
Tl
Ul
o
=
o
|
0
=
o
c
©
<
®
@
Gl
S
a
wn

public static void main (String[] argv) {
tr

("/"+args[0]+“/Bank");
System.out.printin (bank . getBalance ());

} catch (Exception e) {
System.out.printin ("BankClient exception: " + e);

A0,

0180 40 £ ‘,!.ﬁ 2
ALISHIAIND o

Z
Tl
Ul
o
5
o
I
()]
=S
o
c
©
<
™
0]
=
>
oQ
(%)

AT,
a =
i -
L= "..‘
e

0180 40
ALISHAAIND

Deployment Example: Bank Account

— Generating Stubs and Skeletons
rmic BankAccountimpl

— On the server host:

1. Launch Naming service
rmiregistry

2. Launch Server program
jJava BankServer

— On the client host(s):

Launch the client program
Java BankClient <server name—e.g.
kolme.1fi.uro.no>

24

RMI References

e Tutorials:

— http://java.sun.com/docs/books/tutorial/r
mi/index.html|

— http://oreilly.com/catalog/javadc/chapter/c
h03.html

Z
Tl
Ul
o
=
o
|
0
=
o
c
©
<
®
@
(=g
S
a
wn

AT

07150 40 ﬂ S
ALISHIAINA B0 &

25

http://java.sun.com/docs/books/tutorial/rmi/index.html
http://java.sun.com/docs/books/tutorial/rmi/index.html
http://oreilly.com/catalog/javadc/chapter/ch03.html
http://oreilly.com/catalog/javadc/chapter/ch03.html

 Email preferences regarding group
composition (if any)

— To: sabita@ifi.uio.no

=
L
Ul
o
=
o
|
0
-
o
c
©
<
®
@
Gl
S
a
wn

A0,

07150 40 ﬂ,
ALISHAAINDN o

26

	Work groups meeting
	Meeting Plan
	Meeting Plan
	Meeting Plan
	Assignment 1
	Assignment 2
	Regarding both assignments
	Slide Number 8
	Distributed Objects
	Distributed Objects
	Distributed Objects
	Architecture for distributed object systems
	Implementations
	CORBA (Common Object Request Broker Adapter)
	RMI (Remote Method Invocation)
	RMI Scenario
	RMI Deployment
	Example: Bank Account
	Example: Bank Account
	Stubs and Skeletons
	The RMI Registry
	Example: Bank Account
	Example: Bank Account
	Deployment Example: Bank Account
	RMI References
	Slide Number 26

