Work groups meeting — 3

INF5040 (Open Distributed Systems)

Sabita Maharjan

sabita@simula.no

Department of Informatics

University of Oslo
September 07, 2009

mailto:amirhost@ifi.uio.no

Outline

= Design Patterns

= J2EE Design Patterns
= EIS tier patterns

=
M
Ul
(@)
=
(@]
I
o
-
@]
c
O
<
I
M
(md
-
oQ
wn

= Business tier patterns
" Presentation tier patterns

0150 40 5"
ALISHEAING LR 5

Design Patterns

= A design pattern is a solution to a common
recurring problem.

" |t provides cleaner development and easier
maintenance for your applications.

" “Each pattern describes a problem that occurs
over and over again in our environment, and
then describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without ever
doing it the same way twice.”

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

AT
® ‘J
T
T T

A Pattern Language, Christopher Alexander et al, 1977

0180 40
ALISHAAIND

Software Patterns History

= 1987 - Cunningham and Beck used Alexander’s ideas to
develop a small pattern language for Smalltalk

" 1990 - The Gang of Four (Gamma, Helm, Johnson and
Vlissides) began work compiling a catalog of design
patterns

= 1991 - Bruce Anderson gave the first Patterns Workshop
at OOPSLA

= 1993 - Kent Beck and Grady Booch sponsored the first
meeting of what is now known as the Hillside Group

= 1994 - First Pattern Languages of Programs (PLoP)
conference

1995 - The GoF published the Design Patterns book

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

LTER
AT
- &)
® 2
T
s Bt

0180 40
ALISHIAINND

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

IR
AT
- &)
b ;'
T
T T

0180 40
ALISHIAINND

Why Use Design Patterns?

Reuse successful designs and architectures

» Design patterns are proven techniques made more
accessible to developers of new systems

" |Leverage experience recorded in design patterns

Help in choosing design alternatives that make a
system and/or components of that system more
reusable

= Avoid alternatives that compromise reusability
Improved documentation and maintainability

= Specification of classes, objects, their interactions
and intent

Bottom line: get the design “right” faster

Design Patterns

A Design pattern consists of:

1. Name
= A handle that can be used to describe a design problem,
its solutions and consequences
2. The problem
= When to apply the pattern
= The context of the problem
= Conditions before applying the pattern

3. The solution
= Describes the elements that make up the design
= Relationships, Responsibilities, Collaborations

4. The consequences
= Results and trade-offs of applying the pattern

= Necessary for evaluating design alternatives, costs and
benefits

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

AT
el
* o
b ;'
-:__| &
T Tk

0180 40
ALISHAAIND

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

AT
el
* o
b ;'
T &
T Tk

0180 40
ALISHAAIND

Describing Design Patterns

= Pattern Name and Classification
= Essence of the pattern

" |ntent
= What does the design pattern do?
= What is its rationale and intent?
= What particular design issue or problem does it address?

= Motivation

= A concrete scenario that illustrates the problem

= Helps understand the abstract description of the problem
" Applicability

= Where can it be used?

= What poor designs can this pattern address?

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

AT
el
* o
b ;'
-:__| &
T Tk

0180 40
ALISHAAIND

Describing Design Patterns

= Structure
= A graphical representation of the classes in the pattern
= Relationships between classes and objects (not sufficient)
= Decisions, alternatives and trade-offs are necessary for reuse
= Participants

= (Classes and or objects participating in the design pattern
and their responsibilities

" Collaborations
= How the participants collaborate to carry out their
responsibilities
= Consequences
= How does the pattern support its objectives?
= What are results and trade-offs?

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

ST
el
- &
i &
T &
T Tk

0180 40
ALISHAAIND

Describing Design Patterns

" Implementation
= Pitfalls, hints, techniques to be aware of
= Language-dependent issues

= Sample Code

= Code fragments that illustrate how to implement the
pattern in C++ /Smalltalk

= Known Uses
= Use in real systems
= Related Patterns

= Similar patterns and important differences
= Patterns that can be used by or with this pattern

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

A
I'. ¥ '..}r.

0180 40
ALISHAAIND

Categories

Based on Purpose

= Creational design patterns abstract the
instantiation process.

= Structural design patterns are concerned with
how classes and objects are composed to form

larger structures

= Behavioral design patterns are concerned with
algorithms and the assignment responsibilities
between objects

10

J2EE Design Patterns

= A J2EE design pattern is a pattern that
utilizes J2EE technology to solve a recurring
problem.

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

= Patterns are typically classified as (logical):
" Presentation tier
= Business tier
" |ntegration (EIS) tier

ST
el
- &
i &
T &
T Tk

0180 40
ALISHAAIND

11

=
ma
Ul
o
g
o
I
)
)
@)
c
O
<
)
o)
.
-
oQ
wn

0150 40 & 44"

ALISHIAIND

Pattern Categories — J2EE

,_
i e

Application Application Server

Server i
Servlet/JSP EJB

Container Container

e F ”:! T
Client EJB
Databases
Presentation Tier Business Tier EIS Tier

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

A
I'. ¥ '..}r.

0180 40
ALISHAAIND

EIS Patterns:
Data Access Object (DAO)

= Problem

" Most J2EE applications need to use enterprise
or business data from a persistent data store.

* Data, however, can reside in many different
kinds of repositories, from relational databases
to mainframe or legacy systems.

= Mixing application logic with persistence logic
introduces makes maintenance a nightmare for
an application.

13

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

0180 40
ALISHAAIND

DAOQO Pattern

Solution

= Use a Data Access Object (DAO) to abstract and
encapsulate all access to the data source.

" The DAO manages the connection with the
data source to obtain and store data

J2EE
Application

14

=2
M
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

0180 40
ALISHAAIND

Structure

Essentially, the DAO acts as an adapter between the
component and the data source.

The DAO completely hides the data source implementation

DAOQO Pattern

details from its clients.

DataSource

BusinessOhject DataAccessOhbject
uses J encapsulates
. *
o
T _ |
-\-\-\-\' - 0
.. obtainsimodifies
g lcreatesruses
"-\.__
= I
™% e
N
TransferOhject

15

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

0180 40
ALISHAAIND

DAOQO Pattern

= Advantages
= Abstracts implementation details

= Data source independent
" Enables easier migration
" Encapsulates proprietary APls

" Centralizes all data access into a separate layer

= Reduces code complexity
= Application is easier to manage and maintain

16

=
ma
Ul
(@)
=
(@]
I
o
)
@]
c
O
<
I
M
L
-
oQ
wn

Business Tier Patterns

Data Transfer Object
Service Locator
Session Facade
Business Delegate

17

Data Transfer Object(DTO) Pattern

= A Data Transfer Object is a data envelope
used to transfer groups of related attributes
between application tiers

=
M
Ul
(@)
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

18

0180 40 g,
ALISHIAINN L& &

DTO

Problem:

" Each call to an EJB is potentially a remote call
with network overhead

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

" Client usually requires more than one attribute
of an entity

= Accessing each attribute individually increases
network traffic which degrades performance

Read data i1tem 1
Client Read data item 2 (Network Server
Read data i1tem 3 C

0180 40 £ 4%
ALISHIAINN 5 RS ¢

DTO

Solution
" Encapsulates related business data

" Single method call is used to send and retrieve
the Transfer Object

= Passed by value to client via RMI

=
ma
Ul
(@)
=
(@]
I
o
-
(@]
c
O
<
I
M
(md
-
oQ
wn

0180 40 3,
ALISHIAINN L& &

=
M
Ul
(@)
=
(@]
I
o
-
@]
c
O
<
I
M
L
-
oQ
wn

0180 40 £ 44
ALISHEAING BQF &

DTO Relationship

Transfer Object

Client

/N

|
|
I
! Creates
|
|

Business Object

JA

<<EntityEIB>>
Business Entity

<<SessionEIB>>

Business Session

Data Access Object

21

DTO

Adavantages
" |[mproves performance

=
M
Ul
(@)
=
(@]
I
o
-
(@]
c
O
<
I
M
(md
-
oQ
wn

= Fewer remote calls
= Reduced network traffic

" Can access arbitrary sets of data specific to
client requirements

0180 40 3,
ALISHIAINN L& &

=
ma
Ul
(@)
=
(@]
I
)
)
@]
c
O
<
I
M
L
-
oQ
wn

Business Tier Patterns

Data Transfer Object
Service Locator
Session Facade
Business Delegate

Service Locator Pattern

" Class that abstracts details of looking up and
preparing a service
= EJBs, IMS components, data sources, etc.

= Useful for reducing code complexity of service

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

clients
" Provides a single point of control for Service
Access
F' get EJB1 ref. =J]
F@B‘ Client get EJB2 ref. N Egggigle,]
N

0180 40
ALISHAAIND

24

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

ST
el
- &
i g
T &
T Tk

0180 40
ALISHAAIND

Service Locator

Advantages

" Encapsulates complexity of lookup and
creation process

* Uniform service access point for clients
" Improves network performance

= Lookup calls are aggregated on the server

" |[mproved client performance through caching

= Reduces redundant lookups and object creation

25

=
ma
Ul
(@)
=
(@]
I
)
)
@]
c
O
<
I
M
L
-
oQ
wn

Business Tier Patterns

Data Transfer Object
Service Locator
Session Facade
Business Delegate

26

Session Facade

Context

" Enterprise beans encapsulate business logic and
business data and expose their interfaces, and
thus the complexity of the distributed services, to

the client tier
Problem

" Too many method invocations between client and
server, leading to network performance problems

* Lack of a uniform client access strategy, exposing
business objects to misuse

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

Server
EJB call

Client EJB call @

A
I'. ¥ '..}r.

0180 40
ALISHAAIND

Session Facade

Solution

= Use a session bean as a facade to encapsulate
the complexity of interactions between the
business objects participating in a workflow.

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

* The Session Facade manages the business
objects, and provides a uniform coarse-grained
service access layer to clients

Server

_ EJB call
Client Call SF R Session EIB call
Facade

A
I'. ¥ '..}r.

0180 40
ALISHAAIND

Session Facade

e Structure

=
ma
Ul
(@)
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

Clici =<EJBSession=> . |BusinessObject
SessionFacade i
ACCeESSesS
==EntityEJB== ==5eszionEJB==
BusinessEntity Businesssession
- = g -
- . -
_@'g accesses i, TAEREESRS
¢ - DatafAccessOhbject

0180 40
ALISHAAIND

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

AT
el
* o
b ;'
-:__| &
T Tk

0180 40
ALISHAAIND

Session Facade

Advantages

" |[mproves performance by reducing network
overhead

" |[ntroduces control layer for business tier

= Centralizes security management and transaction
control

= Reduces coupling of tiers
" Exposes uniform interface for interaction

= Coarse grained access to business services
= Exposes fewer remote interfaces to clients

30

=
ma
Ul
(@)
=
(@]
I
)
)
@]
c
O
<
I
M
L
-
oQ
wn

Business Tier Patterns

Data Transfer Object
Service Locator
Session Facade
Business Delegate

31

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

A
: =
'_':__I g 3
iy b b

0180 40
ALISHAAIND

Business Delegate Pattern

Context

" |n distributed applications, lookup and exception
handling for remote business components can be

complex.
Problem

" Presentation-tier components interface directly with
business services

= Exposes details of business service implementation,
thus exposed to complexity of network invocations

= Detrimental impact on performance as presentation-
tier components make many invocations over network

32

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

A
I'. ¥ '..}r.

0180 40
ALISHAAIND

Business Delegate

Solution

" Use an intermediate class “Business Delegate”
to decouple business components from the
code that uses them.

" The Business Delegate hides the underlying
implementation details of the business service,
such as lookup and access details of remote

dCCeSS

Service

Locator Server

= EJB call
Client gy R Call SF { Session >
Delegate Facade

33

=
M
Ul
(@)
=
(@]
I
o
-
(@]
c
o
<
I
(¢
(md
-
oQ
wn

0180 40 Eﬁl
ALISHIAINN L& &

Structure

Client

Business Delegate

BusinessDelegate

BusinessSenice

LookupService

Uses

34

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

ST
el
- &
i g
T &
T Tk

0180 40
ALISHAAIND

Business Delegate

= Advantages
= Reduces coupling between tiers
" Translates business services exceptions

= e.g. Network and infrastructure exceptions
translated to business exceptions

" Provides a uniform interface to the business
tier
= Can improve performance through caching

35

Web Tier Patterns

= Model View Controller (MVC) Pattern

" Most Web-tier application frameworks use
some variation of the MVC design pattern.

=
ma
Ul
(@)
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-
oQ
wn

36

0180 40 Eﬁl
ALISHIAINN L& &

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

A
: =
'_':__I g 3
iy b b

0180 40
ALISHAAIND

MV C Pattern

= Name (essence of the pattern)
= Model View Controller MVC
= Context (where does this problem occur)

= MVC is an architectural pattern that is used when
developing interactive applications such as a shopping
cart on the Internet.

= Problem (definition of the recurring difficulty)

= User interfaces change often, especially on the
internet where look-and-feel is a competitive issue.
Also, the same information is presented in different
ways. The core business logic and data is stable.

37

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

A
: =
'_':__I g 3
iy b b

0180 40
ALISHAAIND

MVC Pattern

Solution

" Use the software engineering principle of
“separation of concerns” to divide the
application into three areas:

= Model encapsulates the core data and functionality

= View encapsulates the presentation of the data
there can be many views of the common data

= Controller accepts input from the user and makes
request from the model for the data to produce a
new view.

38

sgunasy dnolo — 005 AN

T
5 M
: _h,)

40

Q180
ALISHAAIND

MV C Pattern

RN N M MR MR S RN NN N M MM N M RN Ny

£ TE

=2
ma
Ul
(@]
=
(@]
I
o
-
(@]
c
o
<
I
D
(md
-1
oQ
wn

AT,
0150 40 £ 4%
ALISHAAINID r‘_'_-__,_ o &

References

EJB Design Patterns by Floyd Marinescu —
Wiley

Core J2EE Patterns: Best Practices and Design
Strategies, Prentice Hall

J2EE Design Patterns Catalog -

http://java.sun.com/blueprints/patterns/catal
og.html

Core J2EE Patterns (online book) -
http://java.sun.com/blueprints/corej2eepatte
rns/Patterns/

40

	�Work groups meeting – 3�
	Outline
	Design Patterns
	Software Patterns History
	Why Use Design Patterns?
	Design Patterns
	Describing Design Patterns
	Describing Design Patterns
	Describing Design Patterns
	Categories
	J2EE Design Patterns
	Pattern Categories – J2EE
	EIS Patterns:�Data Access Object (DAO)
	DAO Pattern
	DAO Pattern
	DAO Pattern
	Business Tier Patterns
	Data Transfer Object(DTO) Pattern
	DTO
	DTO
	DTO Relationship
	DTO
	Business Tier Patterns
	Service Locator Pattern
	Service Locator
	Business Tier Patterns
	Session Façade
	Session Façade
	Session Façade
	Session Façade
	Business Tier Patterns
	Business Delegate Pattern
	Business Delegate
	Business Delegate
	Business Delegate
	Web Tier Patterns
	MVC Pattern
	MVC Pattern
	MVC Pattern
	References

