
INF 5040 høst 2005 1

INF5040, Roman Vitenberg 1

Replication in Distributed

Systems

INF 5040 autumn 2009

lecturer: Roman Vitenberg

INF5040, Roman Vitenberg 2

Replication architecture

Client

Client

Front end

Front end

Server

Replica

Replica

INF 5040 høst 2005 2

INF5040, Roman Vitenberg 3

Why replication I?

�Better performance

� Multiple servers offer the same service –
parallel processing of client requests

� Geographical distribution

– Creating copies of data/objects closer to the
clients leads to smaller network delay and possibly
reduced network traffic

INF5040, Roman Vitenberg 4

Why replication II?

�Better availability (continuous operation despite
failures of individual components)
� For many services it is important that availability with

acceptable response time approaches 100%, despite
that …
– Server processes may fail

– Parts of the network may fail

– Data may get corrupted

� Example: 5% chance of a server failure within a
given period - two independent servers give
99.75% availability

INF 5040 høst 2005 3

INF5040, Roman Vitenberg 5

Challenges of replication

�Complex mechanisms
� Placement of replicas (and search for them)

� Propagation of data (e.g., updates) among the
replicas

� Consistency maintenance

� Monitoring and failover mechanisms

�These protocols also consume bandwidth

� Some of this complexity is exposed to the clients
� Impossible to achieve complete replication

transparency

INF5040, Roman Vitenberg 6

Placement of replicas

Permanent

replicas

Server-initiated caches

Client-initiated caches

Clients

INF 5040 høst 2005 4

INF5040, Roman Vitenberg 7

Placement of replicas

� Permanent replicas

� Clusters of servers

� Geographically dispersed web mirrors (Akamai)

� Server-initiated caches

� Placement of hosting servers

� Placement of caches

– Flash crowds in the Web

�Client-initiated caches

� Enterprise proxies or web browser caches

INF5040, Roman Vitenberg 8

Propagation of updates

among the replicas

� Push-based propagation

� A replica pushes the update to the others

� May push the new data or parameters of the update operation

� Pull-based propagation

� A replica requests another replica to send the newest data it has

By demandEager propagationFreshness of replicas

Poll and updateUpdateMessages sent

A server to pull dataList of client cachesState at the server

Pull-basedPush-basedIssue

INF 5040 høst 2005 5

INF5040, Roman Vitenberg 9

Propagation of updates

among the replicas

� Pushing data vs pushing updates
� Pushing updates reduces traffic

� Requires more processing power on each replica

� Requires deterministic operations

�Hybrid push-pull approaches
� Lease-based propagation

� Pushing invalidations
– A replica that performs the update notifies other replicas

– A replica informed that a newer version is available will fetch
the new version at a later point

INF5040, Roman Vitenberg 11

Lack of consistency

Client

Client

Front end

Front end

Replica

Replica

Replica

deposit(100)

balance()

return 0

INF 5040 høst 2005 6

INF5040, Roman Vitenberg 12

Lack of consistency

Client 1

depositB(x, 100)

depositA(y, 100)

Client 2

balanceA(y) 100

balanceA(x) 0

INF5040, Roman Vitenberg 13

Consistency

�A contract between the client developer and
replicated service provider
� The provider guarantees that the data will be

updated according to some consistency criteria
� The application developer will need to devise

applications with these criteria in mind

� “Ideal consistency”: system behavior is
indistinguishable from a non-replicated system

�The consistency-efficiency-simplicity triangle
Consistency Efficiency

Simplicity

INF 5040 høst 2005 7

INF5040, Roman Vitenberg 15

Sequential consistency

� A systems consist of a number of nodes and a number
of objects replicated on those nodes

� Objects have well-defined interfaces

� An execution consists of events
� Each event is an invocation of an operation on one of the object

at one of the nodes (with input and output values)

� For each object, it is defined whether a sequence of ops makes
sense (i.e., fulfills the specification of a single object copy)

� Sequential consistency: for each possible global history
produced by system execution there should exist a
linearization that fullfills the specification of each object

INF5040, Roman Vitenberg 16

Example revisited

Client 1

depositB(x, 100)

depositA(y, 100)

Client 2

balanceA(y) 100

balanceA(x) 0

This is not sequentially consistent, because there is no

corresponding sequential execution of a non-replicated system

INF 5040 høst 2005 8

INF5040, Roman Vitenberg 17

Balance(a) = empty

C1 C2

Deposit(a, 50)

Balance(a) = 50

More examples

C1

Deposit(a, 50)

Balance(a) = empty

C1 C2 C3 C4

Dep(a,50) Dep(b,30) Bal(a)=50

Bal(b)=em

 Bal(b)=30

Bal(a)=em

C1 C2

Deposit(a,50) Balance(a) = 50

Balance(a) = empty

INF5040, Roman Vitenberg 18

Active replication (replicated

state machine)

� The idea:
� Every replica sees exactly the same set of messages in the same

order and will process them in that order

� Benefits:
� Every server is able to respond to client queries with updated

data
� Immediate fail-over

� Limitations:
� Waste of resources, since all replicas are doing the same
� Update propagation only, which requires determinism

� Different implementation levels
� Machine instruction level (or VM), e.g., Tandem

� Logical state (software-based active replication)

INF 5040 høst 2005 9

INF5040, Roman Vitenberg 19

Passive replication (primary-

backup replication)

� One server plays a special primary role
� Performs all the updates
� May propagate them to backup replicas eagerly or lazily
� Maintains the most updated state

� Backup servers may take off the load of processing
client requests but only if stale results are ok

� Implementable without deterministic operations
� Typically easier to implement than active replication
� Less network traffic during the normal operation but

longer recovery with possible data loss
� Several sub-schemes (cold backup, warm backup, hot

standby)

INF5040, Roman Vitenberg 20

Primary-backup replication

(cold backup)

� Only the primary is active

� Periodically checkpoints its state to backup storage

� Stable storage or shared storage (SAN)

� When the primary fails, the backup is initiated, it loads the state from

storage, and takes over

� Slow recovery

– Need to start the backup (run applications, obtain resources, etc.)

– Either the backup replays the last actions from a log file, or it may miss the last

updates since the most recent checkpoint

� Most resource-efficient

� It is possible to have several backups to survive multiple failures

INF 5040 høst 2005 10

INF5040, Roman Vitenberg 21

Primary-backup replication

(other than cold backup)

�Warm backup
� In this case, the backup is (at least) partially alive, so

the recovery phase is faster
– But typically still requires some replaying of last

transactions, or losing the last few updates

�Hot standby (leader/follower)
� The backup is also up, and is constantly updated

about the state of the primary

� Local-write scheme
� The primary migrates between the servers
� Commonly used in mobile systems

INF5040, Roman Vitenberg 22

Quorum-based replication

� Typically used with data-replacing updates
� Such updates can be performed on old non-updated replicas

� An update is performed on a majority of replicas
� A query is sent to a majority of replicas

� Replies include both versions and values
� A client picks a reply with the highest version
� The replica that sent such a reply is guaranteed to be the most

updated one

� The scheme can be generalized
� Write quorum Sw ={Sw1, …, Swn}, Swi is a set of replicas
� ∀i,j, Swi ∩ Swj≠∅

� A client picks i and performs the update on all replicas in Swi

� Read quorum Sr ={Sr1, …, Srn}, ∀i,j, Sri ∩ Swj ≠∅

INF 5040 høst 2005 11

INF5040, Roman Vitenberg 23

From multicast to reliable

group communication

Group

send

receive

receive
receive

receive
multicast

INF5040, Roman Vitenberg 24

From multicast to reliable

group communication

� Group membership service
� Dynamic maintenance of groups

� Failure detection

� Distributes information about changes in the membership

� Address expansion – an address for multicast to the entire
group

� Reliable delivery
� Acknowledgement of message reception

� Message retransmissions

� Stability detection
� Learning when all members of the group have received the

message

INF 5040 høst 2005 12

INF5040, Roman Vitenberg 25

What is still missing for active

replication support?

� Replicas should receive the same events in the same order

� Problem: synchronization between membership changes
and message delivery

� P1 receives m before it learns about a membership change

� P2 receives m after it learns about a membership change

� Message ordering problem:

� Group communication provides view synchrony & ordered
delivery

Time

P1 P2 P3 P4

A
A B

B

INF5040, Roman Vitenberg 26

View synchrony

�View: epoch of system evolution between
two consecutive changes of membership

�The evolution of the system can be seen
as a global sequence of views

�Illusion of a static system in each view
A B C D E

ABCDE ABCDE ABCDE ABCDE ABCDE

ABC ABC ABC

CDE CDE CDE× ×
× ×

INF 5040 høst 2005 13

INF5040, Roman Vitenberg 27

View synchrony

� Synchronization:
� Processes deliver views and messages in the same sequence of

events

� If two different processes deliver m, they do it in the same view

� Delivering the same set of messages:
� If the process p delivers m in v(g) and later delivers v(g’), then

every process q that delivers both v(g) and v(g’) delivers m in
v(g)

� This implies retransmitting missing messages

� If p delivers m in v(g), and a process q does not deliver m in
v(g), the next view p delivers will not include q

INF5040, Roman Vitenberg 28

Illustration (from the book)

INF 5040 høst 2005 14

INF5040, Roman Vitenberg 29

Ordered message delivery

� Some rule (binary relation) that establishes that
two messages m1 & m2 sent in the system are
ordered: m1 < m2
� Standard relation properties

�Two variants of ordered message delivery
� Unreliable ordered delivery: if a process delivers m1

and m2, it should deliver m2 after m1
� Reliable ordered delivery: if a process delivers m2, it

should have already delivered m1
– Delay message delivery until earlier messages arrive
– To implement, one may need a lot of space for message

buffering

INF5040, Roman Vitenberg 30

Commonly used orderings

� FIFO
�Causal: two messages are ordered if related by

the happen-before relation
� Many applications require message delivery in an

order that preserves cause and effect
– Publish/subscribe (netnews), email, control systems, root

cause determination

�Total: all messages will be received in the same
order by all the processes in the group
� Useful towards implementing the state machine

abstraction

INF 5040 høst 2005 15

INF5040, Roman Vitenberg 31

Implementing ordered

delivery

Message processing

Hold back queue

Delivery queue

Incoming messages

delivery

When delivery conditions

are satisfied

The implementation does

not deliver messages

before it knows that

consistent requirements

are satisfied.

