
INF 5040/9040 2009 1

Frank Eliassen, SRL & Ifi/UiO 1

Mobile and ubiquitous

computing

INF 5040/9040 autumn 2009

lecturer: Frank Eliassen

Frank Eliassen, SRL & Ifi/UiO 2

Motivation

� Mobile computing is concerned
with exploiting the
connectedness of portable
devices

� Ubiquitous computing is about
exploiting the increasing
integration of services and
(small/tiny) computing devices in
our everyday physical world

� Mobile and ubiquitous computing
require particular solutions in
many areas caused by
dynamically changing computing
environment: users, devices, and
software components

Car computer

Home PC

GSM

/UMTS

GSM

/UMTS
The

Internet

The

Internet

BT/

WLAN

BT/

WLAN

INF 5040/9040 2009 2

Frank Eliassen, SRL & Ifi/UiO 3

Some open questions

� How can software
components associate and
interoperate with one
another while devices
move, fail or
spontaneously appear?

� How can systems become
integrated with the
physical world?

� How to adapt to small
devices’ lack of
computation and I/O
resources?

� How to handle security in
volatile, physically
integrated systems? Car computer

Home PC

GSM

/UMTS

GSM

/UMTS
The

Internet

The

Internet

BT/

WLAN

BT/

WLAN

Frank Eliassen, SRL & Ifi/UiO 4

Fields and subfields of mobile

and ubiquitous computing

�Mobile computing

�Ubiquitous
computing

�Wearable
computing

�Context-aware
computing

Car computer

Home PC

GSM

/UMTS

GSM

/UMTS
The

Internet

The

Internet

BT/

WLAN

BT/

WLAN

INF 5040/9040 2009 3

Frank Eliassen, SRL & Ifi/UiO 5

Volatile systems

� Common system model for mobile and ubiquitous
computing (and their subfields)

� Changes (or failures) are considered common rather
than exceptional (in contrast to other types of
systems where changes or failures are considered to
be exceptions)

� Forms of volatility
� failures of devices and communication links
� changes in the characteristics of communication such as
bandwidth

� the creation and destruction of associations – logical
communication relations – between software components
resident on the devices

� Mobile and ubiquitous computing exhibit all of the
above forms of volatility.

Frank Eliassen, SRL & Ifi/UiO 6

Elements of the volatile systems

model

�smart spaces

�device model

�volatile connectivity

�spontaneous interoperation

INF 5040/9040 2009 4

Frank Eliassen, SRL & Ifi/UiO 7

Smart spaces: environments within

which volatile systems subsist

�A physical place/room with embedded services.
The services are provided only or principally
within that space

�Movements or ’appearance or disappearance’ in a
smart space:
� Physical mobility

� Logical mobilitet

� Service/device appearence

� Service/device disappearance

�GAIA: active spaces
� http://gaia.cs.uiuc.edu/

Frank Eliassen, SRL & Ifi/UiO 8

Smart rooms that respond to a user

with an active badge

2. Infrared sensor detects user’s ID

Hello Roy 1. User enters

room wearing
active badge

User’s ID

3. Display responds
to user

Infrared

Hello Frank

INF 5040/9040 2009 5

Frank Eliassen, SRL & Ifi/UiO 9

Elements of the volatile systems

model

�smart spaces

�device model

�volatile connectivity

�spontaneous interoperation

Frank Eliassen, SRL & Ifi/UiO 10

Device model

� Limited energy
� typically use battery
� energy-preserving
algorithms

� Resource constraints
� relative resource poor
(CPU, memory, ...)

� algorithmic challenge

� Sensors and actuators
� to make a device context-
aware

� Examples
� Motes
� Camera phones
�

Car computer

Body sensor

Neuro stimulator

INF 5040/9040 2009 6

Frank Eliassen, SRL & Ifi/UiO 11

Elements of the volatile systems

model

�smart spaces

�device model

�volatile connectivity

�spontaneous interoperation

Frank Eliassen, SRL & Ifi/UiO 12

Volatile connectivity

� Variation between different technologies (Bluetooth,
WiFi, GPRS, etc)

� Bandwidth, latency

� Energy costs

� Financial costs to communicate

� Disconnection

� More likely in wireless networks

� Variable bandwidth and latency

� Packet loss due to weak signal

� Signal strength varies

� Difficult to determine timeout-values in higher layer protocols
due to varying conditions

INF 5040/9040 2009 7

Frank Eliassen, SRL & Ifi/UiO 13

Elements of the volatile systems

model

�smart spaces

�device model

�volatile connectivity

�spontaneous interoperation

Frank Eliassen, SRL & Ifi/UiO 14

Spontaneous interoperation

� In volatile systems, components routinely change the
set of components they communicate with
� take advantage of possibility to communicate with local
components in a smart space, or a device may want to offer
services to clients in its local environment

� Association: a logical relationship formed when at
least one of a given pair of components communicates
with the other over some well-defined period of time

� Interoperation: interaction during an association

� Spontaneous interoperation: interoperation that is not
planned or designed in!

INF 5040/9040 2009 8

Frank Eliassen, SRL & Ifi/UiO 15

Pre-configured vs spontaneous

associations: examples

Spontaneous

Human-driven:

web browser and web servers

Data-driven:

P2P file-sharing applications

Physically-driven:

mobile and ubiquitous systems

Service-driven:

email client and server

Pre-configured

Frank Eliassen, SRL & Ifi/UiO 16

Entering a smart space

� Requirement: a device that appears in a smart space
needs to bootstrap itself in the smart space

� Two steps for bootstrapping itself:
� Network bootstrapping (DHCP-server)
� Establish associations between components on the device and
services in the smart space

� The association problem
� How to constrain the scope to services in the smart space only
(e.g., the hotel room)?

� ‘Boundary principle’:
– smart spaces need to have system boundaries that correspond
accurately to meaningful spaces as they are normally defined
(territorially or administratively)

� Discovery-services: one approach to the association
problem (e.g., Jini: see Coulouris page 671)

INF 5040/9040 2009 9

Frank Eliassen, SRL & Ifi/UiO 17

Service discovery in Jini

Printing
service

service
Lookup

service
Lookup

Printing

service

admin

admin

admin, finance

finance

Client

Client

Corporate
infoservice

2. Here I am:4. Use printing
service

Network

3. Request
‘printing’

1. ‘finance’ lookup

service

Frank Eliassen, SRL & Ifi/UiO 18

Discovery services

� A directory service that is used to register and look up
services in a smart space

� Requirements to discovery services

� Service attributes is determined at runtime (hard!)

� Service discovery must be possible in a smart space without
infrastructure to host a service discovery service

� Registered services may spontaneously disappear

� The protocols used for accessing the directory need to be
sensitive to the energy and bandwidth they consume (cf. device
model)

INF 5040/9040 2009 10

Frank Eliassen, SRL & Ifi/UiO 19

Interface to a discovery service

Return a set of registered services

whose attributes match the given

specification

serviceSet :=

query(attributeSpecification)

Method invoked to look up a service

Refresh the lease returned at

registration

refresh(lease)

Register the service at the given

address with the given attributes; a

lease is returned

lease := register(address, attributes)

Remove the service record registered

under the given lease

deregister(lease)

ExplanationMethods for service de/registration

Frank Eliassen, SRL & Ifi/UiO 20

Design choices for

discovery services

� Directory server or serverless

� Directory server: clients issue a multicast-request to
locate the server (as in Jini)
� Not all smart spaces have facilities for server implementations

� Serverless discovery: the participating devices
collaborate to implement a distributed discovery service

– Push model: servers multicast (‘advertise’) their descriptions
regularly, and clients run their queries against them

– Pull model: clients multicast their requests and devices providing
matching services, respond

� Both approaches are relatively resource demanding (battery,
bandwidth) in their pure form

INF 5040/9040 2009 11

Frank Eliassen, SRL & Ifi/UiO 21

Interoperation

� How can components that want to associate determine
what protocol they can use to communicate?

� Main problem is incompatibility between software
interfaces (components need not have been designed
together)

� Two approaches:
� Adapt interface to each other (interface adaptation): difficult

� Constrain interfaces to be identical in syntax across as wide a
class of components as possible

– Example: Unix pipes (read, write)

– Example: The set of methods defined in HTTP (GET, POST, ...)

– Such systems are called data oriented

– Require additional mechanisms to describe type and value of data
exchanged (e.g. MIME types), as well as as the processing semantics
of the server (difficult!)

Frank Eliassen, SRL & Ifi/UiO 22

Data oriented programming

models

�Data oriented programming models that
have been used for volatile systems:

� Event-systems (pub/sub)

� Tuple spaces

� Direct device interoperation (devices brought into
direct association)

INF 5040/9040 2009 12

Frank Eliassen, SRL & Ifi/UiO 23

Principle of publish-subscribe

(event system)

Frank Eliassen, SRL & Ifi/UiO 24

Example of tuple space:

JavaSpaces

INF 5040/9040 2009 13

Frank Eliassen, SRL & Ifi/UiO 25

Mobile and ubiquitous

computing systems

�How can such systems be integrated with the
physical world ?

Frank Eliassen, SRL & Ifi/UiO 26

Sensing and context

awareness

� Systems can be integrated with the physical world
through sensing and context awareness

� Sensing: use sensors to collect data about the
environment

� Context aware systems: can respond to its (sensed)
physical environments (location, heat, light intensity,
device orientation, presence of a device, etc.) and the
context can determine its (further) behaviour

� Context of an entity (person, place or thing): an aspect
of its physical circumstances of relevance to system
behaviour

INF 5040/9040 2009 14

Frank Eliassen, SRL & Ifi/UiO 27

Sensors

� Combination of hardware and software

� Sensors are the basis for determining contextual values

� Location, velocity, orientation, ...

� Temperature, light intensity, noise, ...

� Presence of persons or things (e.g., based on RFID – electronic
labels - or Active Badges)

� An important aspect of a sensor is its failure model

� Some are simple (e.g., a thermometer often has known error
bounds and distribution), some are complicated (e.g., accuracy
of satellite navigation units depend on dynamic factors)

Frank Eliassen, SRL & Ifi/UiO 28

Sensor architectures

� Applications normally operate on more abstract values
than sensors can produce

� Sensor abstractions are important to avoid application
level concerns with the peculiarities of individual sensors

� Therefore common to build a software architecture for
sensor data as hierarchies
� Nodes at a low hierarchical level provide sensor data at a low
level of abstraction (longitude/latitude of a device)

� Nodes at higher hierarchical levels (closer to the root node)
provide sensor data at higher levels of abstraction (the device is
in Frank’s Cafe)

� Nodes at higher levels combine sensor data from lower
levels both to abstract and to increase reliability

INF 5040/9040 2009 15

Frank Eliassen, SRL & Ifi/UiO 29

Context Toolkit: Example of

sensor software architecture

Attributes (accessible by polling) Explanation

Location Location the widget is monitoring

Identity ID of the last user sensed

Timestamp Time of the last arrival

Callbacks

PersonArrives(location, identity,

timestamp)
Triggered when a user arrives

PersonLeaves(location, identity,

timestamp)
Triggered when a user leaves

� System architecture for general context aware applications
� Based on ’context-widgets’: resuable components that abstract over

some types of context attributes (hide low level sensor details)
� Example: Interface to a IdentityPresence widget class

Frank Eliassen, SRL & Ifi/UiO 30

Context Toolkit: Example of use

of IdentityPresence widget

�A PersonFinder widget constructed by using
IdentityPresence widgets ...

IdentityPresenceRoom A IdentityPresence Room B

PersonFinder

Floor pressure (generators) Video (generator)

Face recognition
Footstep recognition

(interpreter)
(interpreter)

Widgets

INF 5040/9040 2009 16

Frank Eliassen, SRL & Ifi/UiO 31

Wireless sensor networks (WSN)

� Network consisting of a (typically high) number of small,
low-cost units or nodes that are more or less arbitrary
arranged (e.g., “thrown out” in high numbers in a certain
geographical area)

� Self-organising (ad-hoc network), functions
independently of an infrastructure

� The nodes have sensing and processing capacity, can
communicate wirelessly with a limited range (save
energy), and act as routers for each other

� Are volatile systems because nodes can fail (battery
exhaustion or otherwise destroyed (e.g., fire)),
connectivity can change due to node failures

Frank Eliassen, SRL & Ifi/UiO 32

Three architectural features of

wireless sensor networks

� Features driven by requirements of energy conservation
and continuous operation

� In-network processing: The nodes have processing
capabilities because processing is much less costly in
energy consumption than (wireless) communication. Can
be exploited to reduce the need for communication (only
communicate when there is a need for it)

� Disruption-tolerant networking: based on store-and-
forward transfer of data (not end-to-end)

� Data oriented programmeng of nodes: since nodes can
fail, we can not rely on programming techniques for
sensor nodes that refer to single nodes

INF 5040/9040 2009 17

Frank Eliassen, SRL & Ifi/UiO 33

Directed diffusion

� A programming technique that takes the three architectural features
of wireless sensor networks into account

� Nodes (sources) have sensing capabilities (e.g., can measure
temperature) or properties (e.g. location) that they can compare to
needs for sensor information that they receive (as messages)

� Nodes that have a need for sensor information (sinks) declare this in
”interest messages” that they send to neighbour nodes.

A. Interest propagation

source

source

sink

B. Gradients set up C. Data delivery

source

source

sink

source

source

sink

Frank Eliassen, SRL & Ifi/UiO 34

On the need for adaptation

� Run-time conditions of mobile applications (applications
running on mobile devices) vary dynamically
� Varying capabilities of different devices
� Varying resource availability
� User needs and wishes

� Need for adapting the application to a dynamically
varying context
� Adapt application to resource situation (battery, bandwidth,
memory)
– Example: Dynamically adapt media quality (e.g., video) to available
bandwidth and/or to user preferences, and/or to device capabilities

� Dynamically adapt user interface to situation of user or the
orientation of the device ...

� Adapt application to availability of devices and services in the
environment (ubiquitous services)

INF 5040/9040 2009 18

Frank Eliassen, SRL & Ifi/UiO 35

MUSIC - Middleware for context-

aware mobile application

� Mobile USers In ubiquitous Computing environments
� An EU-funded project (FP6, Integrated Project)
� Started October 2006, running through March 2010

� Project outcomes
� Development studio (modeling and transformation tools)

� Middleware architecture (prototype implementation)

� Licensing
� Open Source project (Licensed under LGPL 2.1)

� Website
� http://www.ist-music.eu

Frank Eliassen, SRL & Ifi/UiO 36

MUSIC - Motivation

When handheld devices are
carried by users moving around in
ubiquitous computing
environments

� devices come and go

� network connections come and
go and QoS varies, and therefore

� services available for
use come and go

� service quality varies

� user tasks vary and are
interleaved with tasks related to
movement and social interaction

� computing resources and power
are limited

Body sensor

Car computer

Home PC

GSM

/UMTS

GSM

/UMTS
The

Internet

The

Internet

BT/

WLAN

BT/

WLAN

INF 5040/9040 2009 19

Frank Eliassen, SRL & Ifi/UiO 37

MUSIC - Motivation

changing

environment

user

applications

execution

environment

runs ininfluences

needs

influences

provide

service to

Frank Eliassen, SRL & Ifi/UiO 38

MUSIC - Motivation

� In such environments applications and users will
benefit a lot from context awareness and self-
adaptiveness

�The demand for applications exhibiting such
properties is accelerating
� Mobile computing

� Ubiquitous computing

� Service oriented computing

�Developing such applications with existing
methods and technology is difficult, time-
consuming and costly

INF 5040/9040 2009 20

Frank Eliassen, SRL & Ifi/UiO 39

MUSIC - Vision

� “Provide methods, tools and runtime support
for developing, deploying and maintaining
context-aware, self-adaptive applications
aiming for mobile and pervasive computing
environments”

Frank Eliassen, SRL & Ifi/UiO 40

MUSIC - Approach

�Disciplined development methodology

� Separately develop the context sensing and self-
adapting logic from the business logic of the
applications (Separation of Concerns)

�Use a middleware layer to transparently manage
the extra-functional aspects of the application

� Single, centralized context management (i.e.,
sensing, reasoning, storing, accessing)

� Cross-application adaptation reasoning (utility
function based)

INF 5040/9040 2009 21

Frank Eliassen, SRL & Ifi/UiO 41

device

context

user

context

MUSIC - Approach

environment

context user

context-aware,

self-adaptive

applications

provided utility

battery

memory use

temperature
light

CPU use

position
activity

(e.g., driving)

MUSIC Middleware

adapts
optimizes

monitors

varying context

Frank Eliassen, SRL & Ifi/UiO 42

MUSIC – How it works

� Component-based applications

� Components can be added/removed at runtime (flexibility)

� Application variants (configurations) are determined at runtime

� Centralized context management

� Context sensing, storing, reasoning, and access are all
performed in a centralized way inside the middleware

� Adaptation reasoning

� Based on the varying context (environment, execution context,
user needs) the utility of each variant is evaluated dynamically

� Adaptation occurs when the variant found to be offering the
optimal utility is different from the selected one

INF 5040/9040 2009 22

Frank Eliassen, SRL & Ifi/UiO 43

context

needs

utility

evaluators

MUSIC – How it works
Composed into

adaptation planning

utility=0.5 utility=0.7 utility=0.3

adaptation reasoning

applications are built

as component

compositions

various instantiations of

the application are formed

variants have “context needs”

which are used to “evaluate

their utility”

context changes trigger …

the variant with the

highest utility is selected

… and applied!

Frank Eliassen, SRL & Ifi/UiO 44

Ctrl

MUSIC – role of component

frameworks

UI

Map Loc

Audio

UIctl

textTo

Speech
Nav app impl

AudioUI

Nav

App

Builtin

GPS

Audio

UI imp

= type

= alternative implementations

of a type

= implementation

client

= parameterised implementation

acc = f(Map.lod, Loc.acc)

haf = UI.haf

mem = Ui.mem+Ctrl.mem+Db.mem

nbw = f(…)

Free

map

Com

Map

Normal

UI

Metro

loc

TTS

impl

TTS

service

haf = false haf = true utility =

f(usr.prf, app.prp)

INF 5040/9040 2009 23

Frank Eliassen, SRL & Ifi/UiO 45

Summary

� Most challenges to mobile og ubiquitous systems are
caused by their volatile nature

� In such environments applications need to be context
aware and adaptive

� Integrated with the physical world through sensing and context
awareness

� Adapt to changes in the physical circumstances by changing
behavior (e.g. component reconfiguration)

� There are many challenges, but yet only few
(comprehensive) solutions

� MUSIC: an example of a comprehensive solution

Frank Eliassen, SRL & Ifi/UiO 46

Announcing INF5360/9360:
Seminar on Dependable and

Adaptive Distributed Systems

� First time: Spring 2008. Running again spring 2010
� Seminar content

� Explores state-of-the art principles, methods, and techniques for
devising adaptive and dependable distributed systems.

� The seminar covers
� Architectural and infrastructural principles for adaptive and
dependable distributed systems.

� Adaptivity and dependability in service-oriented architectures,
data dissemination systems, P2P systems, mobile and wireless
environments.

� Approaches to improve the scalability of dependable and adaptive
systems.

� Evaluation and experience reports on dependable and adaptive
distributed systems and services.

� Assumes knowledge at INF5040/9040 level

