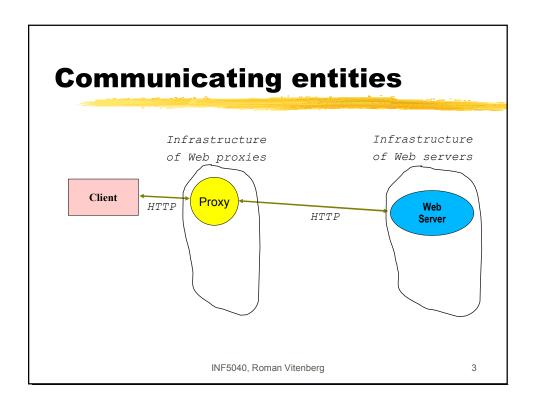
Web-Based Systems

INF 5040 autumn 2009

lecturer: Roman Vitenberg


INF5040, Roman Vitenberg

Two main flavors

- Browser-server WWW application
 - Geared towards human interaction
 - Not suitable for automation
 - Automatic restocking from amazon.com
 - Sniping in eBay
- > Web services middleware
 - Generic extension of the WWW application
 - Web servers announce and provide services
 - Web server can be a client of another service

INF5040, Roman Vitenberg

2

Hypertext Transfer Protocol (HTTP)

- > A simple document transfer protocol
 - A client sends a request & waits for a reply
 - GET,PUT,DELETE,HEAD, and POST methods
- > Stateless
- > Uses TCP as the underlying protocol
- ➤ In HTTP 1.0, each request was sent on a separate TCP connection
- HTTP 1.1 introduced persistent connections and pipelining
- > A response may redirect the client to another document

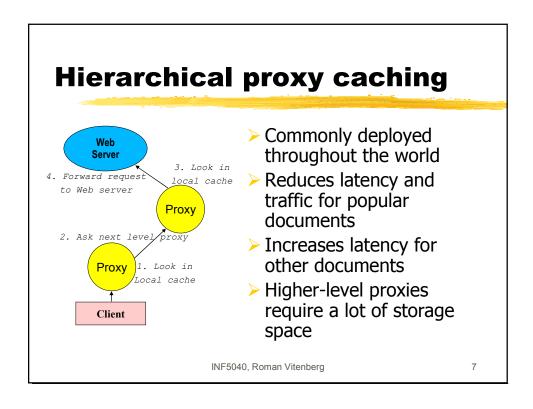
INF5040, Roman Vitenberg

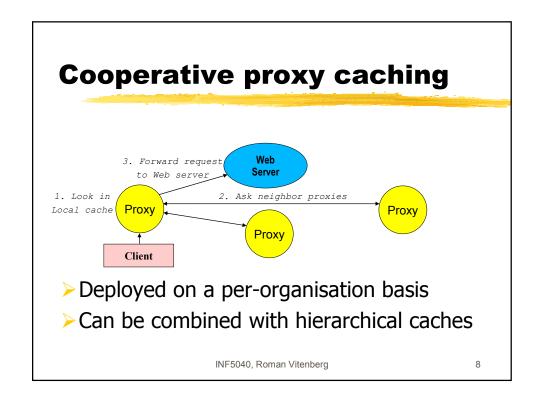
4

Web proxy functions

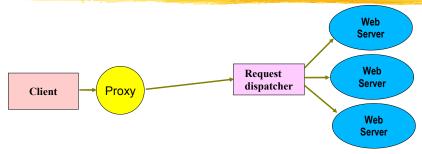
- Protocol translation and conversion
 - Not needed for modern browsers/clients
- > Filtering requests and responses
- Logging
- > Compression
- > Caching

INF5040, Roman Vitenberg


5


Client-side and proxy caches

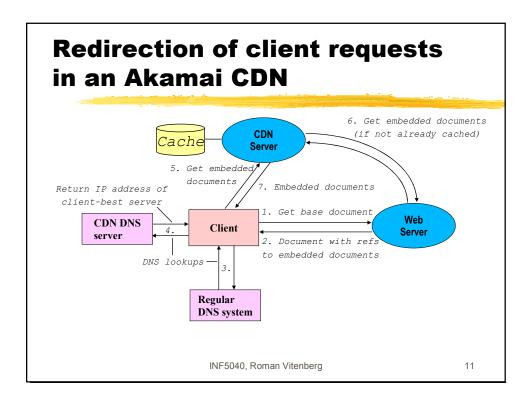
- Cache update protocols
 - Pull with if-modified-since GET HTTP header
 - Lease-based propagation
- Not as effective for dynamic content
- Cache replacement policies
 - LRU is commonly used and it performs well
 - A number of specialised policies, e.g., Greedy-Dual


INF5040, Roman Vitenberg

6

- > Several possibilities for request dispatching
 - Round-robin DNS
 - Content-aware dispatcher inspecting HTTP requests
 - TCP-level switch

INF5040, Roman Vitenberg

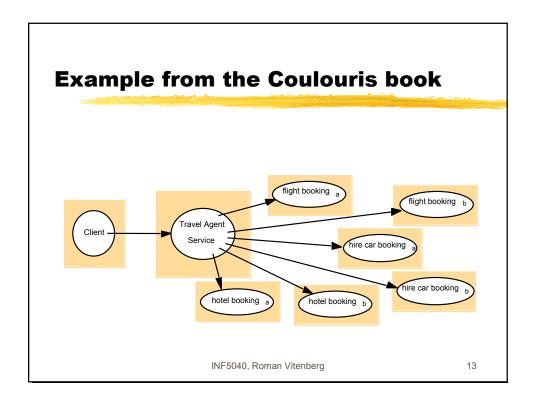

9

Content-distribution network (CDN)

- Placement of data/object replicas
 - See the lecture on replication...
 - A number of evaluation metrics
 - Latency (real-time and the number of hops)
 - Bandwidth (available and network usage)
 - Financial
- Consistency enforcement
 - See the lecture on replication...
- Redirection of client requests

INF5040, Roman Vitenberg

10

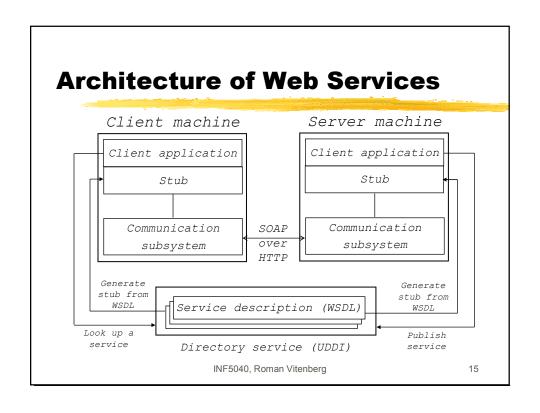


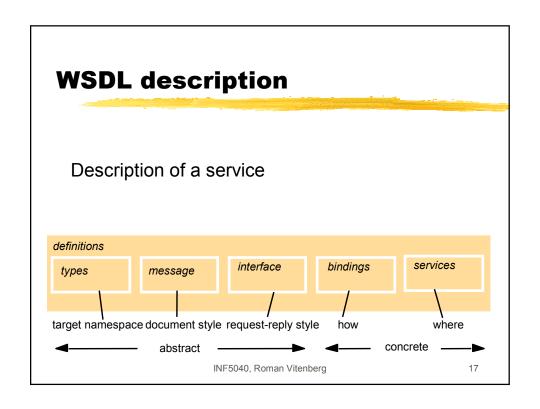
Web services

- Allows an application-specific client to communicate with a service over a functionality-specific API
- Allows a client program in an organisation to communicate with a server program in another
- Allows complex applications that integrate and compose services from other services
- Because the interaction is generic Web-services cannot be directly accessed by browsers

INF5040, Roman Vitenberg

12




Applications of Web Services

- Many well-known web sites offer a Webservices interface to their clients
 - Amazon, Yahoo, Google, eBay...

INF5040, Roman Vitenberg

14

WSDL

- Types
 - Name and type of exchanged values (similar to declaration of variables)
- Messages (operations)
- Interface
 - Operation parameters
 - In-Out, In-Only, Out-In, Out-only...
- Binding
 - The choice of communication protocol
 - typically SOAP, HTTP, or MIME, but others are also possible (e.g., GIOP in order to communicate with Corba)
- Services
 - Specific endpoint addresses, one for each binding
 - For the SOAP binding, it will be a URI of the service location

INF5040, Roman Vitenberg

18

URI – Uniform Resource Identifier

- > URL is the simplest form of URI
 - Based on DNS names
 - Partly location-dependent (in any case dependent on domain names of the mashine)
- URN (Uniform Resource Names) is another possibility that is location independent
 - But they are also more prone to name clashes
 - Dependent on Directory Service "Universal Directory and Discovery Service UDDI"

INF5040, Roman Vitenberg

19

XML – Extensible Markup Language

- > A language for describing message formats
- > Defines how the message is parsed
- > UNICODE-based
 - Readable by both human and machines
 - Ineffective space-wise
- A language that is suitable to represent a hierarchical data structure in a flat UNICODEbased form

INF5040, Roman Vitenberg

20

XML definition example

INF5040, Roman Vitenberg

21

Namespace in the *Person* structure

INF5040, Roman Vitenberg

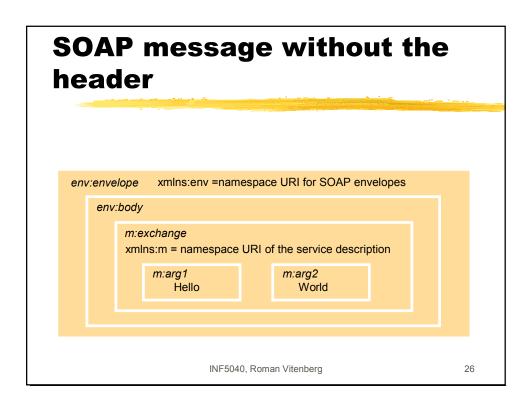
22

23

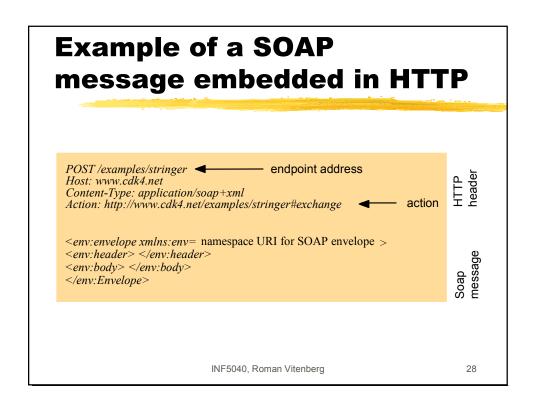
Schema for the Personstructure

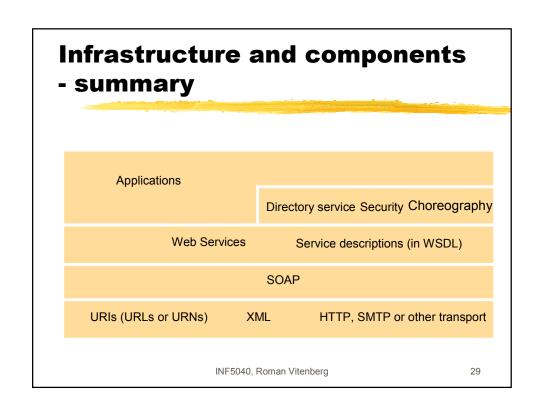
INF 5040

INF5040, Roman Vitenberg


SOAP – Simple Object Access Protocol

- Defines how XML should be used to represent the content of messages
- Defines how a pair of messages can form a request/reply template
- Rules regarding how message recipient should process contained XML-elements
- How HTTP should be used for exchanging SOAP messages


INF5040, Roman Vitenberg


24

SOAP Message Envelope, Header, and Body envelope header header element header element body body body element NF5040, Roman Vitenberg

SOAP-response			
env:envelope xmlns:env = namespace URI for SOAP envelope			
	env		
		m:exchangeResponse xmlns:m = namespace URI for the service description	
		m:res1 m:res2 World Hello	
		INF5040, Roman Vitenberg	27

Main differences from distributed objects

- > Many similarities, but
- Some object concepts do not exist
 - Cannot instantiate and remove objects
 - Garbage collection is irrelevant
 - Using simpler Universal Resource Identifiers instead of Remote Object References
- "Web Services are not Distributed Objects" by Werner Vogels
- "Like it or not, Web Services are Distributed Objects" by Ken Birman

INF5040, Roman Vitenberg

30

Web services vs CORBA

- The scope of deployment
 - CORBA: inside one organisation or a consortium of mutually known collaborating organisations
 - · Web Services: truly global
 - Difference in the naming and references
 - WS discovery is based on DNS that is scalable and global
- Deployment vs communication middleware
 - · Corba: both
 - Web services: communication only
- Interoperability

INF5040, Roman Vitenberg

31

Web services vs CORBA (cont'd)

- Ease of use and the learning curve
 - Web Services
 - Based on HTTP and XML infrastructure that already exists in most operating systems and platforms
 - Messages are human-readable
 - Only additionally requires API for SOAP
 - CORBA: installation/administration + high learning curve
- Efficiency
 - Web Services:
 - Long messages that it takes time to parse
 - Message processing hundreds of times slower compared to CORBA

INF5040, Roman Vitenberg

32