
Metamodelling and Model-Driven Engineering

Department of Informatics
University of Oslo

Friday 28th of March 2014

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 1 / 32



Outline

Metamodelling
Model-Driven Engineering (MDE)
Reasons to use metamodelling and MDE
Challenges

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 2 / 32



Metamodelling
What is metamodelling?

Analysis and construction of artefacts and concepts for modelling
a predefined class of problems
Metamodelling results in a metamodel
A metamodel is an abstraction of the properties of conforming
models
Hence, a metamodel reflects a problem domain
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Metamodelling
What is a metamodel?

A metamodel primarily describes the legal structure of models
Typically defined as a class model
Resembles a grammar specification to some extent
Semantics (both static and behavioural) may be seen as part of
the metamodel (broader view)
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Metamodelling
That is the relation between metamodels and models?

A metamodel describes a language - a set of models
A model conforms to its metamodel
Models are either executable or used as source for code
generation (behavioural semantics/translational semantics)
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Domain-Specificity
General purpose versus domain-specific (a class of problems)
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Domain-Specificity
World / Conceptual problem domain

Metamodel

«conformsTo»

Models

M2

M1

Real life objects

World
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A Simple Example
A Domain-Specific Language (DSL) for modelling of cars

Car DomainCar Domain

Car 1Car 1 Car 2Car 2 Car 3Car 3

Real life universe 
(cars)
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A Simple Example
A Domain-Specific Language (DSL) for modelling of cars

CarCar EngineEngineSteeringSteering

hp : Integer

LightLight

HeatingHeating

AirBagAirBag

BreakingBreaking

RearRear FrontFront

power : Double

delay : Double
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Metamodelling Architecture
MetaObject Facility (MOF)

CarCar EngineEngineSteeringSteering

ClassClass AttributeAttribute

hp : Integer

«instanceOf»

«instanceOf»
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Metamodelling Architecture
MetaObject Facility (MOF)
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Metamodelling Architecture
MOF versus BNF/EBNF
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Metamodelling Architecture
MOF GPL example

M3

Meta-metamodel
(MOF)
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Metamodel for XSD
XSD Metamodel
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Model-Driven Engineering (MDE)

Models and metamodels are central artefacts
Metamodels used to, e.g. formalise languages (modelling and
programming) and domain knowledge
Tools and editors are defined relative to a metamodel
Transformations are defined relative to one or more metamodels
Important principles are automatic code generation, abstraction of
details and robustness through reuse
Composition of metamodels is required for code generation,
consistency checking, addressing evolution and reuse
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Artefacts in MDE
Metamodels, models and tools

Car MetamodelCar Metamodel

Model Editor

ModelsModels

Type Checking

TransformationsTransformations

If e1 <> e2 then
    e1.hp …
else
    ...
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Operations in MDE
Composition/weaving and transformations, etc.

Car MetamodelCar Metamodel Engine MetamodelEngine Metamodel+ =
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             Car 
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             Car 
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              Engine 
          Metamodel

              Engine 
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Car/Engine ModelCar/Engine Model
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Language Artefacts

Language structure (constructs)
I Abstract syntax
I Static semantics, e.g. OCL constraints

Presentation (interface)
I Graphical symbols (concrete syntax)
I Textual concrete syntax

Meaning (semantics)
I Behavioural semantics (e.g. in the form of methods or operations)
I Translational semantics (using transformations to, e.g. a GPL)
I Denotational semantics (mapping to mathematical objects)
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Why use metamodelling, DSLs and MDE?

Small languages - possible to focus on aspects or system
concerns separately
Higher abstraction level
High degree of automation, e.g. code generation
Rise in productivity
Easier communication between stakeholders (model as a
communication device)
Object-oriented definition of structure
Reuse through inheritance and composition/transformation
mechanisms
Possible to create generic tools (e.g. model editors)
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Challenges

Metamodels evolve due to changing requirements and domains
Changing metamodels (including composition) compromises
compatibility with existing models, tools and transformations
Challenge: how to reuse and compose (integrate) metamodels
and models
Challenge: how to address evolution, where existing models, tools
and transformations can be reused (e.g. by automatic revision)
Challenge: how to improve metamodelling (how metamodels,
languages and systems are created and modelled)
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Challenge: changing metamodels
Including composition and weaving

Car Metamodel
v1.0

Model Editor

ModelsModels

Type Checking

TransformationsTransformations

If e1 <> e2 then
    e1.hp …
else
    ...

Car Metamodel
v2.0

Car Metamodel
v3.0
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Challenge: addressing evolution and tool reuse
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Summary

A metamodel describes or formalises a language (broader view:
semantics included as part of metamodel)
A model conforms to its metamodel
Models are either executable or transformed/mapped to entities
defining the semantics
Metamodels and models are key artefacts in MDE together with
tools
Metamodelling and MDE support describing problems at higher
abstraction levels - using models
Advantages are increased productivity and reuse
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