
Metamodelling and Model-Driven Engineering

Department of Informatics
University of Oslo

Friday 28th of March 2014

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 1 / 32

Outline

Metamodelling
Model-Driven Engineering (MDE)
Reasons to use metamodelling and MDE
Challenges

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 2 / 32

Metamodelling
What is metamodelling?

Analysis and construction of artefacts and concepts for modelling
a predefined class of problems
Metamodelling results in a metamodel
A metamodel is an abstraction of the properties of conforming
models
Hence, a metamodel reflects a problem domain

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 3 / 32

Metamodelling
What is metamodelling?

Analysis and construction of artefacts and concepts for modelling
a predefined class of problems
Metamodelling results in a metamodel
A metamodel is an abstraction of the properties of conforming
models
Hence, a metamodel reflects a problem domain

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 3 / 32

Metamodelling
What is metamodelling?

Analysis and construction of artefacts and concepts for modelling
a predefined class of problems
Metamodelling results in a metamodel
A metamodel is an abstraction of the properties of conforming
models
Hence, a metamodel reflects a problem domain

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 3 / 32

Metamodelling
What is metamodelling?

Analysis and construction of artefacts and concepts for modelling
a predefined class of problems
Metamodelling results in a metamodel
A metamodel is an abstraction of the properties of conforming
models
Hence, a metamodel reflects a problem domain

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 3 / 32

Metamodelling
What is a metamodel?

A metamodel primarily describes the legal structure of models
Typically defined as a class model
Resembles a grammar specification to some extent
Semantics (both static and behavioural) may be seen as part of
the metamodel (broader view)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 4 / 32

Metamodelling
What is a metamodel?

A metamodel primarily describes the legal structure of models
Typically defined as a class model
Resembles a grammar specification to some extent
Semantics (both static and behavioural) may be seen as part of
the metamodel (broader view)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 4 / 32

Metamodelling
What is a metamodel?

A metamodel primarily describes the legal structure of models
Typically defined as a class model
Resembles a grammar specification to some extent
Semantics (both static and behavioural) may be seen as part of
the metamodel (broader view)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 4 / 32

Metamodelling
What is a metamodel?

A metamodel primarily describes the legal structure of models
Typically defined as a class model
Resembles a grammar specification to some extent
Semantics (both static and behavioural) may be seen as part of
the metamodel (broader view)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 4 / 32

Metamodelling
That is the relation between metamodels and models?

A metamodel describes a language - a set of models
A model conforms to its metamodel
Models are either executable or used as source for code
generation (behavioural semantics/translational semantics)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 5 / 32

Metamodelling
That is the relation between metamodels and models?

A metamodel describes a language - a set of models
A model conforms to its metamodel
Models are either executable or used as source for code
generation (behavioural semantics/translational semantics)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 5 / 32

Metamodelling
That is the relation between metamodels and models?

A metamodel describes a language - a set of models
A model conforms to its metamodel
Models are either executable or used as source for code
generation (behavioural semantics/translational semantics)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 5 / 32

Domain-Specificity
General purpose versus domain-specific (a class of problems)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 6 / 32

Domain-Specificity

World

World

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 7 / 32

Domain-Specificity

World / Conceptual problem domain

World

Problem domain

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 8 / 32

Domain-Specificity
World / Conceptual problem domain

Real life objects

World

Problem domain

Relevant concepts

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 9 / 32

Domain-Specificity
World / Conceptual problem domain

Metamodel

Real life objects

World

Problem domain

Relevant concepts

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 10 / 32

Domain-Specificity
World / Conceptual problem domain

Metamodel

«conformsTo»

Models

M2

M1

Real life objects

World

Problem domain

Relevant concepts

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 11 / 32

A Simple Example
A Domain-Specific Language (DSL) for modelling of cars

Car DomainCar Domain

Car 1Car 1 Car 2Car 2 Car 3Car 3

Real life universe
(cars)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 12 / 32

A Simple Example
A Domain-Specific Language (DSL) for modelling of cars

Car
Metamodel

Car
Metamodel

Car
Model

Car
Model

Car
Model

Car
Model

Car
Model

Car
Model

«conformsTo» «conformsTo»

Car DomainCar Domain

Car 1Car 1 Car 2Car 2 Car 3Car 3

Modelling universe
(cars)

Real life universe
(cars)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 13 / 32

A Simple Example
A Domain-Specific Language (DSL) for modelling of cars

CarCar EngineEngineSteeringSteering

hp : Integer

LightLight

HeatingHeating

AirBagAirBag

BreakingBreaking

RearRear FrontFront

power : Double

delay : Double

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 14 / 32

A Simple Example
A Domain-Specific Language (DSL) for modelling of cars

EngineEngineSteeringSteering

hp : Integer

LightLight

HeatingHeating

AirBagAirBag

BreakingBreaking

RearRear FrontFront

power : Double

delay : Double

CarCar

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 15 / 32

Metamodelling Architecture
MetaObject Facility (MOF)

CarCar EngineEngineSteeringSteering

ClassClass AttributeAttribute

hp : Integer

«instanceOf»

«instanceOf»

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 16 / 32

Metamodelling Architecture
MetaObject Facility (MOF)

CarCar EngineEngineSteeringSteering

ClassClass AttributeAttribute

hp : Integer

«instanceOf»

: Steering: Steering : Car: Car : Engine
hp = 140

: Engine
hp = 140

«instanceOf»

«instanceOf»

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 17 / 32

Metamodelling Architecture
MetaObject Facility (MOF)

CarCar EngineEngineSteeringSteering

ClassClass AttributeAttribute

hp : Integer

«instanceOf»

: Steering: Steering : Car: Car : Engine
hp = 140

: Engine
hp = 140

«instanceOf»

«instanceOf»

Runtime
[Steering]

Runtime
[Steering]

Runtime
[Car]

Runtime
[Car]

Runtime
[Engine]

Runtime
[Engine]

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 18 / 32

Metamodelling Architecture
MetaObject Facility (MOF)

M3

Meta-metamodel
(MOF)

M2

Metamodel
(Car)

M1

Model
(A specific car)

M0

Runtime objects
(A specific car)

CarCar EngineEngineSteeringSteering

ClassClass AttributeAttribute

hp : Integer

«instanceOf»

: Steering: Steering : Car: Car : Engine
hp = 140

: Engine
hp = 140

«instanceOf»

«instanceOf»

Runtime
[Steering]

Runtime
[Steering]

Runtime
[Car]

Runtime
[Car]

Runtime
[Engine]

Runtime
[Engine]

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 19 / 32

Metamodelling Architecture
MOF versus BNF/EBNF

M3

Meta-metamodel
(MOF)

M2

Metamodel
(Car)

M1

Model
(A specific car)

M0

Runtime objects
(A specific car)

BNF/EBNF

Grammar

Model / program

Runtime

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 20 / 32

Metamodelling Architecture
MOF GPL example

M3

Meta-metamodel
(MOF)

M2

Metamodel
(Java)

M1

Model
(A program)

M0

Runtime objects
(A program)

MethodMethod If-StmtIf-StmtClassClass

ClassClass AttributeAttribute

class Carclass Car process()process() if(…) { … }if(…) { … }

«instanceOf»

«instanceOf»

Runtime
[Class]

Runtime
[Class]

Runtime
[Method]

Runtime
[Method]

Runtime
[If-Stmt]

Runtime
[If-Stmt]

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 21 / 32

Metamodel for XSD
XSD Metamodel

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 22 / 32

Model-Driven Engineering (MDE)

Models and metamodels are central artefacts
Metamodels used to, e.g. formalise languages (modelling and
programming) and domain knowledge
Tools and editors are defined relative to a metamodel
Transformations are defined relative to one or more metamodels
Important principles are automatic code generation, abstraction of
details and robustness through reuse
Composition of metamodels is required for code generation,
consistency checking, addressing evolution and reuse

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 23 / 32

Model-Driven Engineering (MDE)

Models and metamodels are central artefacts
Metamodels used to, e.g. formalise languages (modelling and
programming) and domain knowledge
Tools and editors are defined relative to a metamodel
Transformations are defined relative to one or more metamodels
Important principles are automatic code generation, abstraction of
details and robustness through reuse
Composition of metamodels is required for code generation,
consistency checking, addressing evolution and reuse

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 23 / 32

Model-Driven Engineering (MDE)

Models and metamodels are central artefacts
Metamodels used to, e.g. formalise languages (modelling and
programming) and domain knowledge
Tools and editors are defined relative to a metamodel
Transformations are defined relative to one or more metamodels
Important principles are automatic code generation, abstraction of
details and robustness through reuse
Composition of metamodels is required for code generation,
consistency checking, addressing evolution and reuse

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 23 / 32

Model-Driven Engineering (MDE)

Models and metamodels are central artefacts
Metamodels used to, e.g. formalise languages (modelling and
programming) and domain knowledge
Tools and editors are defined relative to a metamodel
Transformations are defined relative to one or more metamodels
Important principles are automatic code generation, abstraction of
details and robustness through reuse
Composition of metamodels is required for code generation,
consistency checking, addressing evolution and reuse

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 23 / 32

Model-Driven Engineering (MDE)

Models and metamodels are central artefacts
Metamodels used to, e.g. formalise languages (modelling and
programming) and domain knowledge
Tools and editors are defined relative to a metamodel
Transformations are defined relative to one or more metamodels
Important principles are automatic code generation, abstraction of
details and robustness through reuse
Composition of metamodels is required for code generation,
consistency checking, addressing evolution and reuse

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 23 / 32

Model-Driven Engineering (MDE)

Models and metamodels are central artefacts
Metamodels used to, e.g. formalise languages (modelling and
programming) and domain knowledge
Tools and editors are defined relative to a metamodel
Transformations are defined relative to one or more metamodels
Important principles are automatic code generation, abstraction of
details and robustness through reuse
Composition of metamodels is required for code generation,
consistency checking, addressing evolution and reuse

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 23 / 32

Artefacts in MDE
Metamodels, models and tools

Car MetamodelCar Metamodel

Model Editor

ModelsModels

Type Checking

TransformationsTransformations

If e1 <> e2 then
 e1.hp …
else
 ...

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 24 / 32

Operations in MDE
Composition/weaving and transformations, etc.

Car MetamodelCar Metamodel Engine MetamodelEngine Metamodel+ =

Engine
Model #1

Engine
Model #1

Engine
Model #2

Engine
Model #2

Car
Model #1

Car
Model #1

Car
Model #2

Car
Model #2

T1

T2

 Car
 Metamodel

 Car
 Metamodel

 Engine
 Metamodel

 Engine
 Metamodel

Car/Engine ModelCar/Engine Model

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 25 / 32

Language Artefacts

Language structure (constructs)
I Abstract syntax
I Static semantics, e.g. OCL constraints

Presentation (interface)
I Graphical symbols (concrete syntax)
I Textual concrete syntax

Meaning (semantics)
I Behavioural semantics (e.g. in the form of methods or operations)
I Translational semantics (using transformations to, e.g. a GPL)
I Denotational semantics (mapping to mathematical objects)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 26 / 32

Language Artefacts

Language structure (constructs)
I Abstract syntax
I Static semantics, e.g. OCL constraints

Presentation (interface)
I Graphical symbols (concrete syntax)
I Textual concrete syntax

Meaning (semantics)
I Behavioural semantics (e.g. in the form of methods or operations)
I Translational semantics (using transformations to, e.g. a GPL)
I Denotational semantics (mapping to mathematical objects)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 26 / 32

Language Artefacts

Language structure (constructs)
I Abstract syntax
I Static semantics, e.g. OCL constraints

Presentation (interface)
I Graphical symbols (concrete syntax)
I Textual concrete syntax

Meaning (semantics)
I Behavioural semantics (e.g. in the form of methods or operations)
I Translational semantics (using transformations to, e.g. a GPL)
I Denotational semantics (mapping to mathematical objects)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 26 / 32

Why use metamodelling, DSLs and MDE?

Small languages - possible to focus on aspects or system
concerns separately
Higher abstraction level
High degree of automation, e.g. code generation
Rise in productivity
Easier communication between stakeholders (model as a
communication device)
Object-oriented definition of structure
Reuse through inheritance and composition/transformation
mechanisms
Possible to create generic tools (e.g. model editors)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 27 / 32

Why use metamodelling, DSLs and MDE?

Small languages - possible to focus on aspects or system
concerns separately
Higher abstraction level
High degree of automation, e.g. code generation
Rise in productivity
Easier communication between stakeholders (model as a
communication device)
Object-oriented definition of structure
Reuse through inheritance and composition/transformation
mechanisms
Possible to create generic tools (e.g. model editors)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 27 / 32

Why use metamodelling, DSLs and MDE?

Small languages - possible to focus on aspects or system
concerns separately
Higher abstraction level
High degree of automation, e.g. code generation
Rise in productivity
Easier communication between stakeholders (model as a
communication device)
Object-oriented definition of structure
Reuse through inheritance and composition/transformation
mechanisms
Possible to create generic tools (e.g. model editors)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 27 / 32

Why use metamodelling, DSLs and MDE?

Small languages - possible to focus on aspects or system
concerns separately
Higher abstraction level
High degree of automation, e.g. code generation
Rise in productivity
Easier communication between stakeholders (model as a
communication device)
Object-oriented definition of structure
Reuse through inheritance and composition/transformation
mechanisms
Possible to create generic tools (e.g. model editors)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 27 / 32

Why use metamodelling, DSLs and MDE?

Small languages - possible to focus on aspects or system
concerns separately
Higher abstraction level
High degree of automation, e.g. code generation
Rise in productivity
Easier communication between stakeholders (model as a
communication device)
Object-oriented definition of structure
Reuse through inheritance and composition/transformation
mechanisms
Possible to create generic tools (e.g. model editors)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 27 / 32

Why use metamodelling, DSLs and MDE?

Small languages - possible to focus on aspects or system
concerns separately
Higher abstraction level
High degree of automation, e.g. code generation
Rise in productivity
Easier communication between stakeholders (model as a
communication device)
Object-oriented definition of structure
Reuse through inheritance and composition/transformation
mechanisms
Possible to create generic tools (e.g. model editors)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 27 / 32

Why use metamodelling, DSLs and MDE?

Small languages - possible to focus on aspects or system
concerns separately
Higher abstraction level
High degree of automation, e.g. code generation
Rise in productivity
Easier communication between stakeholders (model as a
communication device)
Object-oriented definition of structure
Reuse through inheritance and composition/transformation
mechanisms
Possible to create generic tools (e.g. model editors)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 27 / 32

Why use metamodelling, DSLs and MDE?

Small languages - possible to focus on aspects or system
concerns separately
Higher abstraction level
High degree of automation, e.g. code generation
Rise in productivity
Easier communication between stakeholders (model as a
communication device)
Object-oriented definition of structure
Reuse through inheritance and composition/transformation
mechanisms
Possible to create generic tools (e.g. model editors)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 27 / 32

Challenges

Metamodels evolve due to changing requirements and domains
Changing metamodels (including composition) compromises
compatibility with existing models, tools and transformations
Challenge: how to reuse and compose (integrate) metamodels
and models
Challenge: how to address evolution, where existing models, tools
and transformations can be reused (e.g. by automatic revision)
Challenge: how to improve metamodelling (how metamodels,
languages and systems are created and modelled)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 28 / 32

Challenges

Metamodels evolve due to changing requirements and domains
Changing metamodels (including composition) compromises
compatibility with existing models, tools and transformations
Challenge: how to reuse and compose (integrate) metamodels
and models
Challenge: how to address evolution, where existing models, tools
and transformations can be reused (e.g. by automatic revision)
Challenge: how to improve metamodelling (how metamodels,
languages and systems are created and modelled)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 28 / 32

Challenges

Metamodels evolve due to changing requirements and domains
Changing metamodels (including composition) compromises
compatibility with existing models, tools and transformations
Challenge: how to reuse and compose (integrate) metamodels
and models
Challenge: how to address evolution, where existing models, tools
and transformations can be reused (e.g. by automatic revision)
Challenge: how to improve metamodelling (how metamodels,
languages and systems are created and modelled)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 28 / 32

Challenges

Metamodels evolve due to changing requirements and domains
Changing metamodels (including composition) compromises
compatibility with existing models, tools and transformations
Challenge: how to reuse and compose (integrate) metamodels
and models
Challenge: how to address evolution, where existing models, tools
and transformations can be reused (e.g. by automatic revision)
Challenge: how to improve metamodelling (how metamodels,
languages and systems are created and modelled)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 28 / 32

Challenges

Metamodels evolve due to changing requirements and domains
Changing metamodels (including composition) compromises
compatibility with existing models, tools and transformations
Challenge: how to reuse and compose (integrate) metamodels
and models
Challenge: how to address evolution, where existing models, tools
and transformations can be reused (e.g. by automatic revision)
Challenge: how to improve metamodelling (how metamodels,
languages and systems are created and modelled)

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 28 / 32

Challenge: changing metamodels
Including composition and weaving

Car Metamodel
v1.0

Model Editor

ModelsModels

Type Checking

TransformationsTransformations

If e1 <> e2 then
 e1.hp …
else
 ...

Car Metamodel
v2.0

Car Metamodel
v3.0

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 29 / 32

Challenge: addressing evolution and tool reuse

Car
Metamodel

v1.0

Model Editor

ModelsModels

Type Checking

TransformationsTransformations

If e1 <> e2 then
 e1.hp …
else
 ...Car

Metamodel
v2.0

Car
Metamodel

v3.0

Engine
Metamodel

v1.0

Model Editor

ModelsModels

Type Checking

TransformationsTransformations

If e1 <> e2 then
 e1.hp …
else
 ...

Engine
Metamodel

v2.0

Engine
Metamodel

v3.0

 Engine
 Metamodel
 v2.0

 Engine
 Metamodel
 v2.0

 Car
 Metamodel
 v3.0

 Car
 Metamodel
 v3.0

?

ModelsModels

Type Checking

TransformationsTransformations

??

Model Editor

?

?

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 30 / 32

Summary

A metamodel describes or formalises a language (broader view:
semantics included as part of metamodel)
A model conforms to its metamodel
Models are either executable or transformed/mapped to entities
defining the semantics
Metamodels and models are key artefacts in MDE together with
tools
Metamodelling and MDE support describing problems at higher
abstraction levels - using models
Advantages are increased productivity and reuse

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 31 / 32

Summary

A metamodel describes or formalises a language (broader view:
semantics included as part of metamodel)
A model conforms to its metamodel
Models are either executable or transformed/mapped to entities
defining the semantics
Metamodels and models are key artefacts in MDE together with
tools
Metamodelling and MDE support describing problems at higher
abstraction levels - using models
Advantages are increased productivity and reuse

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 31 / 32

Summary

A metamodel describes or formalises a language (broader view:
semantics included as part of metamodel)
A model conforms to its metamodel
Models are either executable or transformed/mapped to entities
defining the semantics
Metamodels and models are key artefacts in MDE together with
tools
Metamodelling and MDE support describing problems at higher
abstraction levels - using models
Advantages are increased productivity and reuse

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 31 / 32

Summary

A metamodel describes or formalises a language (broader view:
semantics included as part of metamodel)
A model conforms to its metamodel
Models are either executable or transformed/mapped to entities
defining the semantics
Metamodels and models are key artefacts in MDE together with
tools
Metamodelling and MDE support describing problems at higher
abstraction levels - using models
Advantages are increased productivity and reuse

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 31 / 32

Summary

A metamodel describes or formalises a language (broader view:
semantics included as part of metamodel)
A model conforms to its metamodel
Models are either executable or transformed/mapped to entities
defining the semantics
Metamodels and models are key artefacts in MDE together with
tools
Metamodelling and MDE support describing problems at higher
abstraction levels - using models
Advantages are increased productivity and reuse

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 31 / 32

Summary

A metamodel describes or formalises a language (broader view:
semantics included as part of metamodel)
A model conforms to its metamodel
Models are either executable or transformed/mapped to entities
defining the semantics
Metamodels and models are key artefacts in MDE together with
tools
Metamodelling and MDE support describing problems at higher
abstraction levels - using models
Advantages are increased productivity and reuse

(Department of Informatics, UiO) Metamodelling and Model-Driven Engineering March 2014 31 / 32

