
INF5150 Drop 1 from Group 2

Gorm Johnsen Bjørnar Solhaug Astri Ek Larsen
Ida Margrethe Heyerdahl Sven-Jørgen Karlsen

October 14, 2005

1

Contents

1 Introduction 2

2 Assumptions 3

3 Generelt system 4
3.1 The System Context . 4
3.2 System Requirements Overview 5
3.3 System Structure . 6

3.3.1 The EventStore’s Structure 7
3.3.2 The UserStore’s Structure 8

3.4 Class Diagram . 9
3.5 Interaction Overview . 10

3.5.1 Activity Diagram View 10
3.5.2 Sequence Diagram View 10

3.6 Subscribe to Service . 12
3.6.1 BDS_Subscribe . 13

3.7 Publish Event . 14
3.7.1 BDS_PublishEvent . 15

3.8 Join Event . 16
3.8.1 BDS_JoinEvent . 17

3.9 Send Transport Advice . 18
3.9.1 FindOptimalLocation 19
3.9.2 Send Transport Advice(Event, Location) 20
3.9.3 BDS_SendTransportAdvice 21
3.9.4 BDS_FindOptimalLocation(event: Event) 22
3.9.5 BDS_SendTransportAdvice(event: Event, destination:

Location) . 23

4 Alternative functionalities 24
4.1 Interaction overview . 24

4.1.1 Activity diagram view 24
4.2 Refinement 1 - Location given in the original event 26
4.3 Refinement 2 - Time of event 30 minutes after publishment . 26

5 Refinement Arguments 28

1 Introduction

From the exercise text:

We are going to make a system to meet a group of people at
a place that is optimally suited for those that will join.

2

We imaging that we are a third party vendor that offers a
number of events identified by their type and time, e.g. “Go
for a beer at 8 PM Saturday”, “Play bridge at 2 PM today”. It
is possible to join such an event by sending an SMS message to
our dedicated number. At appropriate time before the event,
we will issue a message to the participant how he/she should
use public transportation to reach a given meeting place.

We assume that the mobile phones sending the joining mes-
sage can be positioned, and that we may use the Trafikanten
system to find nearest bus stop, bus schedule and actual delays.

2 Assumptions

We have made the following assumptions:

• The abbreviation BDS stands for the class BlindDatingSystem.

• A user is uniquely identified by his or her mobile phone number. In
other terms, the user communicates with the system with his or her
mobile phone only.

• We are modelling the communication between the system and one
single user at a time. The only exception to this is the system’s activity
of publishing the events to all the users of the service.

• The system structure and interactions that are modelled in this assign-
ment is limited to the requirements of the exercise text and our own
extensions that we needed to add to the system in order to meet the
requirements.

• System behaviour is modelled by means of sequence diagrams.

• We have not specified how the events are created. We imagine
that they are defined by the system administrator and fed into the
EventStore.

• We assume that our Trafikanten and our users (!) are capable of
reading and handling geographical positions (represented by the Po-
sition class). It this is not the case, that is, human-readable addresses
and descriptions of places are also needed, we could easily extend
our system with a converter component to translate between the two
representations of places (positions and meeting places).

• Undeletable execution occurrences (RSM problem): Please read short
execution occurrences as invisible, they were impossible to get rid of
(that is, deleting them swept off the messages they received) in some
diagrams.

3

3 Generelt system

The messaging system we are going to specify, is an instance of the class
BlindDatingSystem. The collaborations diagram of 3.1 shows the context
of the system, its users (through their mobile phones), and the external
Trafikanten system it depends on.

3.1 The System Context

Figure 1: The Context of the BlindDatingSystem

4

3.2 System Requirements Overview

The following Use Case Diagram gives an overview of the main require-
ments (and interactions of the system).

Figure 2: The Use Cases of the BlindDatingSystem

5

3.3 System Structure

The following composite structure diagram (CSD) shows the composition
of the main system class.

Figure 3: The Composite Structure of the BlindDatingSystem Class

6

3.3.1 The EventStore’s Structure

The following CSD shows the composition of the EventStore part of the
system class.

Figure 4: The Composite Structure of the EventStore Class

7

3.3.2 The UserStore’s Structure

The following CSD shows the composition of the UserStore part of the
system class.

Figure 5: The Composite Structure of the UserStore Class

8

3.4 Class Diagram

The following class diagram gives an overview of the classes in the system.
The Controller part of the system class is responsible of organizing all
business logic, and acts as a facade of the other parts. The Locator class
is an abstraction of an optimal meeting place selector component, which
we do not specify further, merely assume it is capable of finding suitable
locations, given events and positions.

Figure 6: Detailed Overview of the Classes in the System

9

3.5 Interaction Overview

3.5.1 Activity Diagram View

The following activity diagram tries to look like an UML2 interaction
overview SD diagram. Please interpret the action nodes with the suffix
“ref” as UML2 interaction occurrences.

Figure 7: Overview of the main interactions of the System

3.5.2 Sequence Diagram View

10

Figure 8: Overview of the main interactions of the System

11

3.6 Subscribe to Service

When a person wants to receive the services of the system, he/she has to
subscribe to the service. This can be done by sending an sms to the system
after which the system creates a new user with the phone number as userID.
The system returns a welcome message to the mobile phone. One negative
trace of this function could be that a person tries to subscribe to the service
with the same phone number several times. However, this is solved by
having a idemponent Subscribe To Service that just overwrites the user in
the system with the same phone number.

Figure 9: The “Subscribe to Service” interaction

12

3.6.1 BDS_Subscribe

Figure 10: "Subscribe to service" decomposed w.r.t. the BDS lifeline

13

3.7 Publish Event

Publish Event models how the system broadcasts to the users the set of
events that is available to the users. This behaviour is triggered by the
Event Store instance.

Figure 11: The “Publish Event” interaction

14

3.7.1 BDS_PublishEvent

Figure 12: The “Publish Event” decomposition of the system’s lifeline

15

3.8 Join Event

Join Event models how a given user interacts with the system in order to join
an event that previously has been published by the system. If the user has
already signed up for this particular event, a message with this information
is returned by the system. If not, the system replies with a confirm message.

The system should not return a confirmation in case the user has already
signed up for the event. Hence the negative combined fragment.

In case the system receives a join message with which an unknown
phone number is associated, the system returns a message in which the
owner of the mobile phone is asked to register.

Figure 13: The “Join Event” interaction

16

3.8.1 BDS_JoinEvent

BDS_Join Event shows the decomposition of the lifeline BlindDatingSystem
of Join Event.

Figure 14: The “Join Event” decomposition of the BDS lifeline

17

3.9 Send Transport Advice

Figure 15: The “Send Transport Advice” interaction

18

3.9.1 FindOptimalLocation

Figure 16: The “Find Optimal Location” interaction

19

3.9.2 Send Transport Advice(Event, Location)

Figure 17: The “Send Transport Advice” with parameters interaction

20

3.9.3 BDS_SendTransportAdvice

Figure 18: The “Send Transport Advice” decomposition of the BDS lifeline

21

3.9.4 BDS_FindOptimalLocation(event: Event)

Figure 19: The “Find Optimal Location(e: Event) ” decomposition of the
BDS lifeline

22

3.9.5 BDS_SendTransportAdvice(event: Event, destination: Location)

Figure 20: The “Send Transport Advice(e: Event, dst: Location) ” decom-
position of the BDS lifeline

23

4 Alternative functionalities

We will in this section change the general system of the previous section by
introducing basically two new features as a replacement of earlier features.

The first novelty is to give the location as a part of the original event
description, whereas the second novelty is to fix the time of the event to be
30 minutes after the event has been published. We will in the next section
show that these changes represent a refinement of the system.

The two new features describe two exclusive refinement alternatives. In
other terms, an implementation should not implement the two simultane-
ously. We will, however, provide a specification that captures both changes
and prove that this specification is a refinement of the original one.

4.1 Interaction overview

4.1.1 Activity diagram view

The activity diagram for the refined system shows the two new function-
alities. Notice that the behaviour of the original system as specified by
Subscribe to Service is left unchanged, while the remaining behaviour of
the original system is categorized as negative.

24

Figure 21: Interaction overview with refinements

25

Figure 22: The “Send Transport Advice” decomposition of the BDS lifeline

4.2 Refinement 1 - Location given in the original event

When an event is created in the original system, the location of the event
is decided from the best location with respect to the users who want to
join the event. In this refinement, the location of the event is given in the
original event description. Since this feature is the only difference between
this refinement and the original Publish Event functionality, the sequence
diagrams of PublishEvent_GL will be identical with the exception of an
additional attribute (the location). These diagrams are therefore omitted
here.

The sequence diagram for the transport advice when the location is
already given, SendTransportAdvice_GL, differs from the original one and
is described in the sequence diagram below.

4.3 Refinement 2 - Time of event 30 minutes after publishment

This new functionality fixes the time of the event to be 30 minutes after the
publishment of the event. The sequence diagrams show how the system

26

Figure 23: The “Send Transport Advice(e: Event, dst: Location) ” decom-
position of the BDS lifeline

27

Figure 24: Publish Event with Time 30 min from Published Sequence Dia-
gram

gets the current time and fixes the event time accordingly.
The system behaviour as specified by Join Event and Send Transport

Advice will be unchanged in this refinement, and so the sequence diagrams
of the previous section apply.

5 Refinement Arguments

We have modeled two different system, the first captured by the interaction
overview of Figure 3.5.2, the second captured by the interaction overview
of Figure 4.1.1.

The fist system specification contains the sequence diagrams Subscribe
to Services, Publish Event, Join Event and Send Transport Advice. These
diagrams will for simplicity be referred to as SS, PE, JE and STA, respec-

28

tively. SS is processed in parallel with the sequential processing of the latter
three. Let S1 denote (PE seq JE seq STA). Our first system may now be
denoted by BDS1 = (SS par S1).

The second system specification contains the sequence diagram NS1 in
which the traces of S1 has been made negative. The specification further-
more contains the sequence diagrams SS, Publish Event_GL=PEGL, Publish
Event_30 = PE30, JE, STA and Send Transport Advice_GL = STAGL. Let S2
denote (PEGL seq JE seq STAGL) and S3 denote (PE30 seq JE seq STA). Our
second system may now be denoted by BDS2 = (SS par (NS1 alt S2 alt S3)).

We will now prove that BDS2 is a property refinement of BDS1, i.e. that
BDS1 BDS2.

Notice first that by reflexivity of the refinement relation, SE SE.
The refinement relation is furthermore monotonic with respect to the par-
operator, which means that in order to prove that BDS1 BDS2, it suffices
to prove that S1 (NS1 alt S2 alt S3)

In order to do this we need to capture the positive and the negative
traces of the sequence diagrams. Let d be any sequence diagram. pos(d) is
then the set of positive traces of d, while neg(d) is the set of negative traces
of d.

The semantics of S1, denoted [[S1]], is the singleton set of interaction
obligations {(p1,n1)}, where p1 = pos(S1) and n1 = neg(S1).

The semantics of (NS1 alt S2 alt S3) is also a singleton set of inter-
action obligations {(p2,n2)}, where p2 = pos(NS1) ∪ pos(S2) ∪ pos(S3) and
n2 = neg(NS1) ∪ neg(S2) ∪ neg(S3).

By definition, the interaction obligation (p2,n2) refines the interaction
obligation (p1,n1) iff n1 ⊆ n2 and p1 ⊆ p2 ∪ n2.

Since neg(S1) ⊆ neg(NS1), neg(S1) = n1 and neg(NS1) ⊆ n2, we have
n1 ⊆ n2. Since all the positive traces of N1 has been made negative in NS1,
we have p1 ⊆ neg(NS1). Clearly neg(NS1) ⊆ p1 ∪ n2, and so p1 ⊆ p2 ∪ n2.

The refinements of the general dating system are all property refine-
ments. By adding the traces of S2 and S3, we did a supplementing as
inconclusive behaviour of S1 was made either positive or negative. By
making all the positive traces of S1 negative, we did a narrowing.

Notice finally that since pos(NS1) = {〈〉}, i.e. the set of positive traces of
NS1 contains the empty trace only, our refinements give that p2 ⊆ pos(SE).
This is a flaw in the specification of BDS2 that we have chosen not to deal
with in this assignment.

29

