UNIVERSITY OF OSLO
Department of Informatics

INF5150
Group No. 5
Multiple Blind Date

Rune Froeysa, runefr,
Ina Flesvik, inahe,
Vikash Katta, vikashk,
Kristoffer Stav, krsta

14th October 2005

Contents

1 Introduction

2 Assumptions

3 The main system components and its context

4 A general Multiple Blind Date system

4.1
4.2
4.3
4.4
4.5

Description e
Usecasediagram
Composite structure diagram
Classdiagram
Sequencediagrams

5 Alternative solutions

5.1
5.2
5.3
5.4
55
5.6

Refinementand proofs
Immediateevent.
External servicesaredown
Toofewsubscribers

The most optimal meeting place for the participants 10

Subscribe

1 Introduction

This document describes the specifications for the Multipliad Date system,
using UML 2.0 diagrams.

Multiple Blind Date system is a service that organizes ev@atcustomers who
participate. The customers subscribes for events via SM8&nAnder message is
sent back to the customers x minutes prior to the event withggested public
transport schedule.

Section4 describes a general approach for the MultipledBDate system,
which includes a use case diagram, class diagram, comsigiteture diagram
and multiple sequence diagrams. Section 5 discuss someatite solutions as
refinements of the general one, with sequence diagrams antspr

We have used IBM Rational Software Modeler for designingdies. It lacks
some of the functionality we would like do include. An examd passing mes-
sages from one sequence diagram to another. There is no vdagvtioa message
from the diagram edge to a lifeline (that we know of). A woikand for this prob-
lem was to make a lifeline that represent the diagram edgeveéNy elegant, but it
does the work.

2 Assumptions

In our first approach of designing the Multiple Blind Dateteys we assume that
each event is commenced on a fixed location. Under Sectionfawe presented
an alternative solution where the meeting place is decigesd on the client’s
positions.

The customers communicate with the system via SMS, and thieegphumber
is the customer identification.

The data format on the position is not discussed in this decumWhether the
positions are represented with x and y coordinates, or septed by names stored
as strings, is not defined here.

Multiple Blind Date needs more features than the ones dee=tiin this docu-
ment before going into production, including:

» Aback-end interface for system maintenance, i.e addidgemoving events.

» Aninformation provider is needed, i.e. a web-site whishsliup all available
events the customers can sign up for, including a descnitidow to sign
up. The site could fetch all entries listed up in the tableriEse

3 The main system components and its context

This section gives a brief description of the componenthénMultiple Blind Date
system.

Client is the interface towards the customers which signs up fontswda SMS
sent to a given phone-number. The client listens for messfgm custom-
ers, and sends messages back to the customers.

BlindDateSystem (BDS) is the components which manages and stores informa-
tion about events and clients signed up for events. Timatiposnd parti-
cipants are kept for each event.

Trafikanten is an external service. It is used to find a public transpiortatoute,
time schedule and delays for the customers. From-positiken{ position)
and to-position in addition to the time is required to retei¢his information.

PositioningSystemis an external service which finds the client’s position. The
phone-number is sent to the PositioningSystem and theiqosstreturned.

Timer triggers the BDS to send out event notifications (with a satige for a
public transportation schedule) x minutes prior to the éven

Event is an entity that represent an event. Each event has a ticetjdn, and a
list of clients subscribed for that event.

4 A general Multiple Blind Date system

4.1 Description

Ouir first approach describes a general Multiple Blind Datgise. As mentioned
in the introduction, the location for the events is fixed. Hihe clients interact
with the system, and how the system interact with the cliargsllustrated in the
use case diagram in Figure 1 in Section 4.2.

An instance of BDS is the main component. It Ontarians irearof a Con-
troller and a list of events. It also has references to thereat components Client,
Trafikanten, the Timer and the PositioningSystem.

4.2 Use case diagram

The use case diagram in Figure 1 shows the clients and howirtteggict with the
system. It also shows what tasks the BDS system performs.

There are mainly two use cases; subscribe event is the szevizere a client
subscribes for an event. An acknowledgement is sent from BCiBe client in
return. The second use case is the scenario where BDS senpishific transport
schedule to the client.

4.3 Composite structure diagram

Composite structure diagrams shows how components cadisbwith each other
over communication links. Figure 2 shows a composite sirectliagram for the

Subscribe event

Client

BDS

Send
Notification

Figure 1: Use case diagram

Multiple Blind Date system. The components Client, Traftiean PositioningSys-
tem and Timer are external components.

& MulipleBlindDateSystem

: Client . Controller 1 Event

: Trafikanten : PositioningSystem : Timer

Figure 2: Composite structure diagram

4.4 Class diagram

Figure 3 shows the class diagram for the Multiple Blind Dagst&m. Read about
these classes in Section 3. The controller is the componbithwakes care of
decision making and communication with the various comptme

4.5 Sequence diagrams

The sequence diagrams illustrate the chronological seguehmessages and in-
teractions between the components in the system. The fagitadin shows an over-
view over the main sequence diagrams, see Figure 4.

(2 BlindDateSystem

1
1
1
(2 Controller O Event
-
1
1 1
/
E Timer
1 (2 Cliem
1
{2 Pos itioningSystem {2 Trafikanten

Figure 3: Use case diagram

=< Overview

Client:Client ‘ ‘ blindDateSystem:BlindDateSystem

Subscribe

Reminder

Figure 4: Overview

The sequence diagrams Subscribe and Reminder, which iemeésl in Figure
4 is illustrated in Figure 5 and 6, respectively.

The subscribe diagram shows the interaction between et ehd BDS, when
the client subscribes for an event. See Figure 5.

The reminder diagram shows the interaction betweem thewsigomponents
of the system, including Trafikanten and the PositioningSwsin order to send

a transport schedule to all the clients subsribed for antevéhe reminder is
triggered by a Timer. See Figur 6.

4 Subscribe

Client:Client | blindDateSystem:BlindDateSystem

1: subscribe(event)

[event_notlfmweditNotFound(phonenumber, event)

-

[Mot subscribed]

[event_folind] : ok(phonenumber)

Figure 5: Subscribe

Decomposition of the lifeline BlindDatesystem in Figureegarding Subscribe
and Reminder is illustrated in the Figures 7 and 8, respalgtiv

Figure 9 shows how the Controller communicates with thetPosingSystem
and Trafikanten in order to come up with a suggestion for aiptitsinsportation
schedule. Client position is retrieved from the Positigigstem, which we can
assume find the position of the client's mobile phone. Whés itiformation is
retrieved, client position, event location and the timetfar event is sent to Trafik-
anten. A description is returned, which is sent back to thlentl As we can see of
the alt fragment in Figure 9, Trafikanten might not come ufhaitoute suggestion
because of some reason, then this is expressed with ‘sehedufound'.

There is no way to makeref in the lifeline head (as far as we know).

% Reminder

Client-Client fimer Timer blindDateSystem?: BlindDateSystem positioningSystem:PositioningSystem trafikanten: Trafikanten
T
]

1: timeNotifier(event)

’H ref BDS_Reminder

Toap getParticipantPosition(phonenumber)
[0 Foreach client

ereturns
getParticip

: gerTranspons chedule(event posiion, cliem_postion, time)
getTransportSchedule(event_position, client_position, time) T

alt
[Schedule found]

1: notify (schedule found)

T
[Sched u!e not found] 1: notify(schedule net found)

Figure 6: Reminder

< BDS_subscribe
diagramEdge: DiagramEdge ‘ controller:Controller event:Event

1: subscribe(phonenumber, event)

[Found] 1: addClient(phonenumber)

[Not found]
1: eventMotFound

L

Note: The alt goes
beyond the border of this
diagram. The leftmost
lifeline represent the
diagram edge.

Figure 7: Decomposition of MultipleBlindDateSystem: stitiise

5 Alternative solutions

We have made three alternative solutions for the Multipi@dDate system. The
changes are described in the following subsections. We imaleded diagrams
here that illustrate changes compared to the original desigSection 5.1 we see

+% BDS_reminder

o T ‘ ‘ c Controller H event:Event H p y F ystem H trafikanten:Trafikanten

T
|
1: timeNotifier(event) 2: getClient

«returnx
3: getClient

4: getlLocation

areturn»
5: getLocation

Toop

101 For each client

et
SendSchedule

Figure 8: Decompoasition of MultipleBlindDateSystem: reihér

~< SendSchedule

client:Client | | controller3: Controller ‘ | positioningSystem3:PositioningSystem | | trafikanten3:Trafikanten

=

:|getParticipantPosition{phonenumber)

areturns
tParticipantPosition(phonenumbel

)

N

3: gefTransportSchedule(event_position, client_paosition, time)

ereturn»
4: getTransportSchedule(event_paosition, client_position, time)

alt

[scheduladBRAEL hedule found)

Ischgcgy AR ke o founc)

S

Figure 9: Send public transportation schedule

why these alternative solutions are refinement of the aalgarvice description.

5.1 Refinement and proofs

First, we will very briefly present the requirements for refiment stated in STAIRS.
Refinement involves making modifications to a system dedigough three ap-
proaches:

Supplementing : define more negative or positive traces in the system. @r sai
with other words: make inconclusive traces positive or tiegaln practice
you add features to the system, or define features that aadloaed in the
system

Narrowing : involves reducing the number of positive traces, by makabeset
of the positive traces negative. In practice you are reduttie number of
“features” or positive runs in the system, by putting somest@ints to it.

Detailing involves giving a more detailed description, without chagghe exist-
ing behavior considerably.

We will present give alternative solutions to the systemedghalternative solu-
tions have made changes to parts of the system.

5.2 Immediate event

Our first approach of modify the original design is to incluglenew feature as
follows: if the event is commencing within 30 minutes frone thubscription, no
reminder/notification is given. Instead the transport dakleis sent right away.

The modification is a refinement of BDS_subscribe presemddgure 7. A
modified sequence diagram for event subscribing is givengare 10. As we can
see, a check is performed within the innermost alt fragmiétihe event is occur-
ring within 30 minutes, the “send schedule routine” is ahllg not, an ordinary
confirmation (stated with “OK” in the diagram) is returnedtke client, and the
transport schedule is sent later.

This is a refinement of the original diagram, because we hdveduced some
new positive traces. This is supplementing. The positiaeds in the original
solution is a subset of the traces in this solution. The sappdies to the other
alternatives in the folling subsections.

5.3 External services are down

In our original system description we have not taken intaaot that the external
components Trafikanten and the PositioningSystem can beiladale for some
reason. A modification of SendSchedule is illustrated inuFagL1.

This is a refinement of the original diagram. The inconclegiaces (Service
is down) are made negative, and we have not introduced additpositive traces.
According to refinement defined by STAIRS, this is supplemngntwvhich makes
the sequence diagram presented in Figure 11 a refinemerg ofitfinal diagram.

9

““ NOW-+ 30 minutes

Refinement of BDS_Subscribe

troll Trafikante
H ‘nr\-r H H H rafikanten

1 7
1: subscribe(phonenumber, event)|

Note: the leftmost lifeline. i

represent the diagram edge 4

alt

[Event Found]

alt
[Now > event.time+30: send ¢ 1: addClient(phonenumber)

2: ok

[Now < event.tinie + 30: send transport schedule] | 1 addClient(phonenumber) |

et

SendSchedule

[Event Not found
1: eventNotFound

Figure 10: Refinement of subscribe

5.4 Too few subscribers

A third alternative solution to the original system desigrta cancel an event if
too few customers has subscribed., see Figure 12. If lersw@a(just a arbitrary
number), the event is canceled. This alternative solutisolves adding new traces
to the reminder sequence diagram, hence this is supplamenti

5.5 The most optimal meeting place for the participants

The EventManager will check the position for every participand find a location
which is most optimal for each participant, as we can seegnr€i13. We assume
that the controller has sufficient logic to calculate theiropt meeting place by
using a list of the clients position. The Controller will thask for travel info from
Trafikanten to this optimal place, and send travel info tdhgaarticipant.

As in the previous refinements, we have introduced new peditaces. This
is supplementing. No negative traces are defined.

5.6 Unsubscribe

The clients should have the ability to cancel the partiagpafor events. This is
illustrated in Figure 14 and 15. This involves adding newtdess, hence it is
supplementing according to STAIRS.

10

< ServiceDown

diagramEdge:DiagramEdge | | controller:Controller | | positioningSystem:PositioningSystem || trafikanten: Trafikanten

1:d

etParticipantPosition{phonenumb

e

2:d

«returns
ParticipantPositioniphonenumb

1:servicelsDown

3: getTransponSchedule(even

t_position, client_position, time)

wret
4: getTransponSchedule(even

urns
t_position, client_position, time)

1:servic

elsDown

Figure 11: Refinement of SendSchedule

11

“%Few cleints

Refinement of EDS_Reminder

diagramEdge:T dge ‘ | € ontroller Client:Client

1: timeNaotifier(event)

2: getClient
<retums
3: getClient
4: getLocation .
«return»
5: getLocation
alt
[Clients>2]
[oop
For each client
[0,4]
i
ret
SendSchedule
[Cleints<2]
foop
For each cleint
[0.4]
1: notify(event cancelled) B

Figure 12: Too few subscribers

12

5% BDS_reminder (dynamic location)

diagramEdge:DiagramEdge | | controller:Controller | | eventEvent | | positioningSystem:PositioningSystem

1: timeNotifier(event)

2: getClients

wreturnys
3: getClients

4: getLocation

[meeting place not defined]

faop)
" foreach client

[0, 1: getParicipantPosition(phonenumber)

wreturns
2: getParicipantPosition(phonenumber)

3: calculateMostOptimalMeetingPlaceilist of positions)

[meeting place fixed]

1:!sendLocation(position)

1990 1 for each client
%1

SendSchedule

Figure 13: Optimal meeting place: refinement of BDS_reminde

13

““Unsubscribe

Client:Client | | blindDateSystem3:BlindDateSystem
T

L unsubscribe(phonenumber,event)
ref BDS_unsubscribe

[event found) 1: ok

[event not fognd];enthotFound(event)

Figure 14: Refinement: new functionality added, subscribe

< BDS_Unsubscribe
diagramEdge:DiagramEdge | | controller:Controller event:Event

1: unsubscribe(event)

alt 1: removeCleint(phonenumber)
[Event found] 1.1 ok 2|
r]
[Event not found] 1: eventMotFound

Figure 15: Subscribe

14

