
JavaFrame modeling with
Rational Software Modeler

Introduction

This guide will help you learn how to create and transform JavaFrame models using
Rational Software Modeler and the JavaFrameTransformation plug-in. Models can be
transformed to a running Java system.

Installation

Install the plug-in by extracting JavaFrameTransformation_x.zip to
<RationalSoftwareModelerHome>/rsm/eclipse. The first time you start the program you
may have to use the argument –clean in order to make eclipse search for new plugins.

Transforming

Create a Java project which will contain the generated java files.

• Click File > New > Project…
• Click Show All Wizards in the new Project wizard and select Java Project. Don’t

switch to Java perspective.
• Add javaframe.jar to the build path:

• Select the java project in Model exporer and go to: Project > Properties > Java
Build Path > Libraries > Add external jars…

• javaframe.jar is located in
<RationalSoftwareModelerHome>/rsm/eclipse/plugins/javaframetransformati
on_x/

Create a transformation configuration.

• Go to: Modeling > Transform > Configure Transformations
• Create a new UML2 to JavaFrame transformation and select the Java project as

target.
• Click Apply and Close.

Now you can run the transformation. Right click a model element, select Transform and
choose the transformation configuration.

Tip
Open Problems view to see if the generated code has errors and where they are. There
sometimes are a lot of unused import warnings, which can be ignored.

Running the system

To run the java project you must create a run configuration.

• Switch to Java perspective (or just open a Java file)
• Go to: Run > Run… > Java Application > New
• Set the name of the configuration and locate the main file.

Trace
If you want to trace the system using JFTrace add the arguments:
 -remote localhost:54321

When using trace make sure to start JFTrace and open the default input socket before you
run the JavaFrame system.

Modeling

Getting started
Create an UML project and select the Model element in Model explorer. In the Properties
view, select Profiles and Add Profile. Select JavaFrameProfile from the dropdown menu.
Ignore the warning about the profile not being released.

In order to be able to use Java types in the model, right click the model element and
select Import Model Library > JavaTypes.

Finally add a package to the model. You always need a top-level package for your
system.

Composites
To create a composite add a Class to any package and apply the Composite stereotype.
Then add a Composite Structure Diagram. Composites consist of ports, parts and
connectors.

Ports can have a Mediator, defined elsewhere in the model, as type or be of unspecified
type. If the type is unspecified there must be one and only one outgoing connector.

A part can be either another composite or a statemachine. If you want to add a
statemachine as a part, first create it in Model explorer and drag it to the composite
structure diagram. Notice that when you add a port to a statemachine-part in the diagram,
the port element will be added to the statemachine in Model explorer and to all other
parts of that type.

If a statemachine that is used as a part has parameters. You need to add arguments as a
comma separated list in the part’s Default Value field.

In the figure above PtnComposite has two parts, both of type PtnStateMachine.
PtnStateMachine has a paramter called mylocalvariable of type int. The figure below
shows sm2’s Default Value field set to 54.

Pitfall
The Default Value field will be pasted into the constructor call of the statemachine and is
not checked by the transformation. If you type incorrect code here you will most likely
not get an error message but the generated code will be wrong. This is true for all user-
code in the model.

Multiplicity
Parts can have multiplicity values 1 (default) and *. Any other multiplicity values will be
treated as *. If * is chosen there is initially not added any instances of that part but a
StateMachine can create instances with a <<Create>>Activity/Action. Parts with *
multiplicity should not have any default value.

Main
The Composite stereotype has a property called main. If this is set to true there will be
generated a Main class which creates this composite.

Signals
Signals are sent between ports and cause statemachines to trigger transitions. Signals can
have attributes, which will be added as a variable to the generated java class for the
signal. Signals can be abstract and they can extend other signals.

A signal element is transformed to a class extending the JavaFrame Message class, unless
it extends another signal.

Ports / Mediators
Ports are transformed to javaframe mediators. A standard javaframe mediator can only
have one address and will forward all signals it recieves to that address. If you want to
define your own mediator behavior, create a class and apply the SimpleRouterMediator,
the InputEdgeMediator or the Mediator stereotype. This class can then be used as a type
for ports.

ForwardActivity
If you want to redefine what happens when the Mediator receives a Signal you must add
an Activity to the class and apply the ForwardActivity stereotype to it. This is mandatory
if you use SimpleRouterMediator.

All Activities in the model with be translated into code. If the Activity has an Action the
code will be the name of the Action. If there is no Action the code will be the name of the
Activity. The ForwardActivity code will be run every time the mediator receives a signal.
The code has access to a sig:Message pointer which points to the signal received.

If the SimpleRouterMediator stereotype is applied you will have access to a
mediatorList:List variable. This list contains Addressable objects, which can be either
Mediators or Statemachines. Otherwise you will have access to an address:Addressable
variable. The Addressable interface has a one method: forward(Message sig)

Tip
User Ctrl-Enter for line break when writing code in Actions. If you find it inconvenient to
write code in the model, try using the comment //TODO instead of the real code. After
you transform the model, the location of all the //TODO comments will be shown in the
Tasks view. Replace the comment with the real code using the regular java editor and
finally paste it back into the model.

Attributes
Mediators can have attributes just like Signals. However if a Mediator has attributes, any
port that uses it as type must set them with a comma separated list in its Default Value
field. There you will have access to all Attributes/Parameters defined in the
Composite/Statemachine which owns the port.

StateMachines
Statemachines consist of states, pseudostates and transitions. Supported state types are
State, SubmachineState and FinalState. Supported pseudostates are Initial, Entry, Exit
and Choice.

Attributes / Parameters

Statemachines can have both attributes and parameters. Both are added as a variable to
the generated java class for the statemachine. Parameters must be set by the Default
Value field of a part as explained under Composites. In order to add parameters right
click the statemachine, select Properties and go to Parameters.

Attributes owned by statemachines can have the TimerMsg stereotype. The TimerMsg
stereotype has a time property with a default value of 1000 milliseconds. This can be
changed at Properties View > Stereotypes > Property. The timer is started / stopped by
startTimer() and stopTimer() methods. When a TimerMsg reaches its time limit it will be
sent to the statemachine, which will handle it like any other message. Both Type and
Default Value of a TimerMsg attribute is ignored.

States
All states can have entry/exit activities. In the activity code for entry/exit you have access
to a method: output(Message, Mediator, StateMachine) and a csm pointer which points to
the enclosing StateMachine.

States can be either regular states or SubmachineStates. A SubmachineState has another
statemachine as its submachine. A statemachine used as a Submachine in a
SubmachineState, must be owned by the statemachine which owns the SubmachineState.

StateMachines used as submachines can have entry/exit points, but make sure to add any
entry/exit point to the statemachine and not the region.

Pitfall
If you add entry/exit points to a SubmachineState in a diagram, they will be added as
ConnectionPointReference elements. These will not automatically correspond to any
entry/exit points defined in the submachine. You can set them manually, but a better way
is to first create the Submachine, with all entry/exit points, then drag it to the diagram of
the top-level statemachine. All ConnectionPointReference elements will be handled
automatically.

Transition-triggers
Transitions from States should have trigger(s). Triggers can be added to a transition in
two ways, the first is to add a SignalTrigger and select signal element(s). The second is to
use the name of the transition. If a transition doesn’t have a SignalTrigger element the
name will be interpreted as a comma separated list of signals that trigger the transition.
Since there is no TimerMsg signal the only way to add a TimerMsg trigger is to use the
name of the transition.

When a statemachine receives a signal it will check all the triggers of the outgoing
transitions in its current state. The transitions are checked in the order they are listed in
Properties>Triggers of the State, which by default is the order they are added. An
exception is a trigger-less transition, which is interpreted as “any signal”, and is always
checked last. If none of the current states transitions fire, transitions on the enclosing state
are checked in the same way. If no transitions fire all the way to the top-level state the
signal will be ignored.

Transition effects
A Transition can have an effect. An effect is an Activity element which is transformed to
java code and is run whenever the transition fires. If the activity has an Action element
the code will be the name of the Action. If there is no Action the code will be the name of
the Activity.

Transition effect code has access to these pointers/methods:

• output(Message,Mediator,StateMachine)
• sig : pointer to the signal that triggered the transition

• csm : the top-level statemachine this state is part of

If the transition can be triggered by more than one signal the sig pointer is of type
Message, which is the supertype of all signals. If the transition is triggered by only one
signal, the sig pointer has the type of that signal.

Only the top-level statemachines is transformed to a StateMachine class. And the csm
pointer points to an object of that type. For instance in the PtnModel example the csm
pointer points to a PtnStateMachine object, even in effect code in PtnSubmachine.

Transition create effects
If you want to add an instance to a part with multiplicity * in the composite that owns this
statemachine, apply the Create stereotype to the Activity element. The name of the
activity should be a java call statement with the name of the method equal to the name of
the part. If the part is a statemachine and has parameters you need to add arguments to the
call. Set the compositeOwner property of the Create stereotype to the name of the
composite that owns this statemachine. This requires that the statemachine is only used as
a part in one composite.

For example, you have a composite TestComposite containing a part
creator:CreatorStateMachine with multiplicity 1 and another part sm:TestStateMachine
with multiplicity *. You want to make a transition inside CreatorStateMachine add a
TestStateMachine instance to sm. The name of that transitions <<Create>> activity
should be sm(); The compositeOwner property of the Create stereotype should be
TestComposite. Using the Create stereotype requires that the CreatorStateMachine is
only used in TestComposite.

Transition guards
Outgoing transitions from Choice Points should have a guard. A guard must either be a
boolean expression or [else]. If the Choice Point doesn’t have an out-transition with a
[else] guard you must make sure that one out-transition always fires when the system
reaches the Choice Point. If the system checks all out-transitions from a Choice Point and
no transitions fire the model is ill-formed.

PackageImport
User code is not checked for required imports, so if an activity uses an element which is
defined in another package the import must be set manually by adding a PackageImport
element to the owner of the activity. Right click, select properties and PackageImport.
Add a new PackageImport and select the correct package. PackageImports can be added
to Classes, States and StateMachines.

Importing Java libraries
Using types defined in external java libraries is possible by creating and importing a
ModelLibrary. A ModelLibrary represents a java library and is a standard UML model
with the modelLibrary stereotype. Add the packages and classes needed from the external
library to the ModelLibrary and import it to the JavaFrame model by right clicking the
model element, selecting Import Model library > File.

Connecting to a test-GUI
Any composite can connect to a test-GUI. In order for the transformation to generate a
GUI class you need to define all of the ports of the composite as either output or input.

You define a port as being output by applying the OutputEdgeMediator stereotype to the
port. Input ports are defined by using class with the InputEdgeMediator stereotype as the
type of the port.

You must define what kind of signals can be sent to the system by adding Reception
element(s) to the type of an input port. To add a Reception right click the mediator class,
select Properties and go to OwnedReception. Receptions should not have abstract signals.

