
2-Sep-05 INF5150 INFUIT Haugen / Stølen 1

IN
F 5150

INF-5150 2005
by Øystein Haugen and Ketil Stølen
plus assistants Atle Refsdal, Gøran Olsen

Version 050902

2-Sep-05 INF5150 INFUIT Haugen / Stølen 2

IN
F 5150

Øystein Haugen <oysteinh@ifi.uio.no>
80-81: UiO, Research assistant for Kristen Nygård

– 81 : IN 105 together with Bjørn Kirkerud
81-84: Norwegian Computing Center, Simula-machine
84-88: SimTech, typographical applications
88-90: ABB Technology, SDL, prototype SDL tool, ATC
89-97: SISU project, methodology, V&V, ITU

– 93: Engineering Real Time Systems
– 96: Integrated Methodology -> TIMe

96-00: Rapporteur ITU for MSC
97: Practitioners’ verification of SDL systems (dr. scient.)
97- 03: Ericsson, NorARC
98- 03: Ifi, UiO as Part time Associate Professor

– IN-TIME (98) IN-RTIMe (99) IN-RTIMe (2000) INFUIT (2001 og 2002)
99- : Participates in OMG wrt. UML 2.0

– 2003: Responsible for UML 2.0 chapter on Interactions
04 - : Associate Professor at Ifi

2-Sep-05 INF5150 INFUIT Haugen / Stølen 3

IN
F 5150

Ketil Stølen <ketil.stolen@sintef.no>

Leader of Group for Quality and Security Technology at SINTEF
Professor II at IFI
Background from University of Manchester (4 years); Technical
University Munich (5 years); Institute for Energy Technology (3 years);
Norwegian Defence Research Establishment (1 year); SINTEF (5
years)
PhD in formal methods
Leading role in the development of the Focus method - a formal
method providing the basic foundation for the refinement part of this
course
Lead the development of the CORAS methodology for model-based
security analysis providing the basic foundation for the security part of
this course
Is currently managing research projects with a total budget of 35
million NOK

2-Sep-05 INF5150 INFUIT Haugen / Stølen 4

IN
F 5150

Atle Refsdal <atler@ifi.uio.no>

Education:
– Electrical engineer, Gjøvik Ingeniørhøyskole
– Master thesis in Language, Logic and Information (Språk, Logikk og

Informasjon – SLI) at the Faculty of Arts, University of Oslo
Previous employees:
– Beijer Electronics, Drammen. Industrial automation/Programmable

Logical Controllers
– Computas AS, Oslo/Lysaker. Knowledge Systems

“Saksbehandlingssystemer”.
Currently employed at the Department of Informatics as a PhD
student in the SARDAS project
– where Ketil Stølen, Øystein Haugen, Birger Møller-Pedersen and Rolv

Bræk are supervisors
– we describe/analyze availability using UML or UML-like models

Took INF-5150 in 2003
Was assistant to INF-5150 in 2004

2-Sep-05 INF5150 INFUIT Haugen / Stølen 5

IN
F 5150

Gøran K. Olsen <gorano@ifi.uio.no>

Education:
– Ongoing Master, Object-orientation, modelling and languages.

Supervisor Øystein Haugen. Finishes A2005
– Bachelor IT/Economics Bodø University College

Previous employees:
– Ifi, Student assistant:

INF-2120
INF-1000

– Bodø University College
Algorithms and Data Structures (BUC)
Database1 and 2 (BUC)

– Bjølsen Skole

Took INF-5150 in 2004

2-Sep-05 INF5150 INFUIT Haugen / Stølen 6

IN
F 5150

Books and Curriculum

We will produce and refer to written material to support the lectures

– UML 2.0 support literature: The UML Reference Manual 2nd edition

– and chapter from UML for Real

– Semantics of Interactions: Report on STAIRS

The slides of the lectures will be made available on the web in
Acrobat format

The lectures are part of the curriculum

INF 5150 will use the required planning pages which are at:
http://www.ifi.uio.no/INF5150/

2-Sep-05 INF5150 INFUIT Haugen / Stølen 7

IN
F 5150

Goal: Unassailable IT-Systems

The course INF-UIT aims at teaching the students
– how software is made unassailable meaning that

the software is easily analyzed with respect to reliability and
dependability
the software is easily maintained

The overall goal is to explain
– how practical software development can benefit from theories

about
state machines
refinement
formal reasoning
modularity
security and related matters

2-Sep-05 INF5150 INFUIT Haugen / Stølen 8

IN
F 5150

Practical details

When?
– Friday 9.15 - 12.00

Where?
– Lille Auditorium, Informatikkbygget

except for 16. September when it is in Vilhelm Bjerknes Aud. 4

Language: English
Exam

– Credits: 10 studiepoeng
– Form: written
– Grades: A - F

Obligatory Exercises
– There will be one obligatory exercise done in groups of 5-6
– The students may be asked to explain details in their solution
– The obligatory exercise will have two drops

2-Sep-05 INF5150 INFUIT Haugen / Stølen 9

IN
F 5150

Unassailable IT-Systems

Unassailable?
IT?
Systems?

2-Sep-05 INF5150 INFUIT Haugen / Stølen 10

IN
F 5150

Unassailable

Not assailable : not liable to doubt, attack, or question
Where is this important?

– for all software?
to some extent, but possibly less than one would like to think

– for some critical software
telecom
surveillance (of patients, of production processes)
within computers themselves

This course is not concerned with attacks that come from
hackers towards data bases with sensitive content

– we are concerned with helping software to perform desirably
even in unexpected situations

2-Sep-05 INF5150 INFUIT Haugen / Stølen 11

IN
F 5150

IT?

Information Technology
– using computers
– with emphasis on practical systems
– with emphasis on behavior

Engineering
– Well acknowledged and asserted techniques
– Creativity only when and where needed
– Replication of earlier efforts
– Pragmatics as well as theory

2-Sep-05 INF5150 INFUIT Haugen / Stølen 12

IN
F 5150

Systems?

distributed
concurrent
real-time

– In synchrony with real life
– often small amounts of time

for each service e.g.
Automatic Train Control

– the actual durations may or
may not be significant

reactive
heterogeneous
complex

2-Sep-05 INF5150 INFUIT Haugen / Stølen 13

IN
F 5150

Lecture plan - INF-5150 Autumn 2005

2-Sep-05 INF5150 INFUIT Haugen / Stølen 14

IN
F 5150

FORTRAN
Algol Pascal

C
Norwegian Computing Center

SIMULA
(Nygaard, Dahl)

Xerox PARC
SmallTalk (Kay)

Apple
MacIntosh

OOA(Yourdon)

Objectory
(Jacobsson) Booch

OMT
(Rumbaugh)

UML 1.x (Rational/OMG)

SDL-88

Microsoft
Windows

Hoare-logic

CSP
Hoare Jones

VDM
Milner
CCS

LOTOS (ISO)

COBOL

SQL

ER-model

SDL-92 (ITU)

Bell Labs
C++

Sun

OODB

JAVA

UML 2.0 in the history of languages

Broy/Stølen
Focus

Corba

UML 2.0 (OMG)

SDL-2000 (ITU)

MSC-2000 (ITU) EJB Web services

MSC-92 (ITU)
ROOM

(Objectime)

2-Sep-05 INF5150 INFUIT Haugen / Stølen 15

IN
F 5150

The founding fathers

FORTRAN
Algol Pascal

C
Norwegian Computing Center

SIMULA
(Nygaard, Dahl)

Xerox PARC
SmallTalk (Kay)

Apple
MacIntosh

OOA(Yourdon)

Objectory
(Jacobsson) Booch

OMT
(Rumbaugh)

UML 1.x (Rational/OMG)

SDL-88

Microsoft
Windows

Hoare-logic

CSP
Hoare Jones

VDM
Milner
CCS

LOTOS (ISO)

COBOL

SQL

ER-model

SDL-92 (ITU)

Bell Labs
C++

Sun

OODB

JAVA

Broy/Stølen
Focus

Corba

UML 2.0 (OMG)

SDL-2000 (ITU)

MSC-2000 (ITU) EJB Web services

MSC-92 (ITU)
ROOM

(Objectime)

Conceptual base of OO:
Classes with
Inheritance,
Polymorphism (virtual),
Co-routines
Garbage Collection

2-Sep-05 INF5150 INFUIT Haugen / Stølen 16

IN
F 5150

Making OO Popular and Commercial

FORTRAN
Algol Pascal

C
Norwegian Computing Center

SIMULA
(Nygaard, Dahl)

Xerox PARC
SmallTalk (Kay)

Apple
MacIntosh

OOA(Yourdon)

Objectory
(Jacobsson) Booch

OMT
(Rumbaugh)

UML 1.x (Rational/OMG)

SDL-88

Microsoft
Windows

Hoare-logic

CSP
Hoare Jones

VDM
Milner
CCS

LOTOS (ISO)

COBOL

SQL

ER-model

SDL-92 (ITU)

Bell Labs
C++

Sun

OODB

JAVA

Broy/Stølen
Focus

Corba

UML 2.0 (OMG)

SDL-2000 (ITU)

MSC-2000 (ITU) EJB Web services

MSC-92 (ITU)
ROOM

(Objectime)

Experimental programming:
Runtime checks
Graphical in/out

Effective programming and
Efficient programs:
Explicit memory control

2-Sep-05 INF5150 INFUIT Haugen / Stølen 17

IN
F 5150

The Three Amigos

FORTRAN
Algol Pascal

C
Norwegian Computing Center

SIMULA
(Nygaard, Dahl)

Xerox PARC
SmallTalk (Kay)

Apple
MacIntosh

OOA(Yourdon)

Objectory
(Jacobsson) Booch

OMT
(Rumbaugh)

UML 1.x (Rational/OMG)

SDL-88

Microsoft
Windows

Hoare-logic

CSP
Hoare Jones

VDM
Milner
CCS

LOTOS (ISO)

COBOL

SQL

ER-model

SDL-92 (ITU)

Bell Labs
C++

Sun

OODB

JAVA

Broy/Stølen
Focus

Corba

UML 2.0 (OMG)

SDL-2000 (ITU)

MSC-2000 (ITU) EJB Web services

MSC-92 (ITU)
ROOM

(Objectime)

Visual Language
Analysis phase
Standardization

2-Sep-05 INF5150 INFUIT Haugen / Stølen 18

IN
F 5150

Influences on UML 2.0

FORTRAN
Algol Pascal

C
Norwegian Computing Center

SIMULA
(Nygaard, Dahl)

Xerox PARC
SmallTalk (Kay)

Apple
MacIntosh

OOA(Yourdon)

Objectory
(Jacobsson) Booch

OMT
(Rumbaugh)

UML 1.x (Rational/OMG)

SDL-88

Microsoft
Windows

Hoare-logic

CSP
Hoare Jones

VDM
Milner
CCS

LOTOS (ISO)

COBOL

SQL

ER-model

SDL-92 (ITU)

Bell Labs
C++

Sun

OODB

JAVA

Broy/Stølen
Focus

Corba

UML 2.0 (OMG)

SDL-2000 (ITU)

MSC-2000 (ITU) EJB Web services

MSC-92 (ITU)
ROOM

(Objectime)

Class diagrams,
Use Cases

Internal structure
(Parts and Ports)
Improved State Machines

Structured
Sequence Diagrams Improved Components

2-Sep-05 INF5150 INFUIT Haugen / Stølen 19

IN
F 5150

What language(s) to use?

Requirements
– used in practice for real engineering
– expressive
– visual
– precise
– trendy

Alternatives
– java (Sun)

possibly supplied with selected libraries
– SDL (ITU)
– MSC (ITU)
– UML 1.x (OMG)
– UML 2.0 (OMG)

2-Sep-05 INF5150 INFUIT Haugen / Stølen 20

IN
F 5150

Why choosing UML 2.0?

Pro
– UML is definitely trendy wrt. modeling languages
– UML is standardized by open standardization organization

(OMG)
– UML 2.0 has most features of MSC and SDL
– UML 2.0 is more precise and executable than UML 1.x
– UML 2.0 is supported by more than one tool, and can be

expressed through any drawing tool like Powerpoint, Visio,
Framemaker

– UML 2.0 is now, UML 1.x is history soon

Con
– Full UML 2.0 is probably not supported by any dedicated tool, yet
– Real programmers do not use modeling languages anyway

2-Sep-05 INF5150 INFUIT Haugen / Stølen 21

IN
F 5150

Use:
Identifying main system functions

Domain and application modeling

internal structure of objects

Interactions between objects

Class behaviour (state oriented)
Ditto (action oriented)

For software structure
For hardware/software structure

UML Diagrams

UML diagrams:
– Use case diagram
– Static structure diagrams:

Class / object diagram
Collaboration
Composite structure diagram

– Behavior diagrams:
Sequence diagram
Communication diagram
State diagram
Activity diagram

– Implementation diagrams:
Component diagram
Deployment diagram

2-Sep-05 INF5150 INFUIT Haugen / Stølen 22

IN
F 5150

Class Diagram

PartDecomposition

Part Interaction

Action
(from Common Behavior))

Interac tionUse
ident : String

Gate
name : Str...

ActionOccurrence

AtomicFragment

Lifeline

Event
(from State Machines)

0...0...

+theDecomposedPart +represents
1

+action

1

0...0...
actualgates

0..n

1

0..n

0..10..1

0..n0..n

1

0..n

0..n

+theCoveredPart
0..n

0..n

+theEventOwner
1

+start
11

+stop
11

11

+events1..n {order...

1

1..n

Message
(from Messages))

+initiatingAction

1

+sendMessage +sendEvent
1

1
+receiveMessage +receiveEvent

1

Connector
0..n

+theConnection
0..n

0..1
+theConnection

0..1

+theMessage

class

attribute

role

multiplicitygeneralization

composition

navigability

association

2-Sep-05 INF5150 INFUIT Haugen / Stølen 23

IN
F 5150

User ACSystem environment

1: code

3: OK

2: CardOut

4: Unlock

Sequence Diagram (UML 1.x corr. MSC-92)

Lifeline

Object

Message

Method

2-Sep-05 INF5150 INFUIT Haugen / Stølen 24

IN
F 5150

:ACSystem
ref AC_UserAccess

sd UserAccess

EstablishAccess ("Illegal PIN")ref

opt

OpenDoorref

Idle

Idle

:User

msg("Please Enter")

CardOut

PIN OK

Sequence Diagram (MSC-2000 in UML clothes)

diagram frame

interaction use

combined fragment

decomposition

2-Sep-05 INF5150 INFUIT Haugen / Stølen 25

IN
F 5150

Collaboration diagram (UML 1.x)
Communication diagram (UML 2.0)

User

ACSystem

Environment

1: Code

2: CardOut
3: OK

4: Unlock

Object

Message

Sequence info

2-Sep-05 INF5150 INFUIT Haugen / Stølen 26

IN
F 5150

ACContext

:ACSystem

:User

:Supervisor

:NewUser

0..*

1

0..*

Collaborations in UML 2.0 clothes
collaboration definition

connectors

composite structure

interaction
sd Q

x y

m1()

m2()

state machine

noGame

signing

signedOn

playing

Timout1 /
 notify player,
 start Timer2

Timeout1 /
notify player,
 start Timer2

StartPlay /
 Inform player

to move, start Timer1

CancelPlay

SignOn /
start Timer1

Timeout2

Scissors |
Paper |
Stone

Timeout2

Play /
sign player on for

a new game

2-Sep-05 INF5150 INFUIT Haugen / Stølen 27

IN
F 5150

sm Panel

NoCard

OneCard:
GivePIN

Cardid(cid)

H

msg(t)/send(msg(t))

State Machines (UML 2.0)
State

Transition

transition action

Start

trigging event

2-Sep-05 INF5150 INFUIT Haugen / Stølen 28

IN
F 5150

How important are languages?

Not very important
– “Syntactic sugar”

Very important
– “Understanding through describing”

2-Sep-05 INF5150 INFUIT Haugen / Stølen 29

IN
F 5150

Methodology

A good language helps a lot
– but is hardly sufficient
– you need to know how to use the language also

A good method is hard to find
– easy to understand
– easy to believe in
– easy to follow
– easy to modify
– easy to get positive effects

– easy to cheat?
– easy to overlook?
– easy to misuse?
– hard to evaluate?

2-Sep-05 INF5150 INFUIT Haugen / Stølen 30

IN
F 5150

Verification and Validation

Barry Boehm, 1981:
– Verification: To establish the truth of correspondence between a

software product and its specification (from the Latin veritas, “truth”).
Are we building the product right?

– Validation: To establish the fitness or worth of a software product for its
operational mission (from the Latin valere, “to be worth”).
Are we building the right product?

Quality
– process quality = meeting the specification
– system quality = playing the role required by the environment.

Quality assurance
– Constructive methods that aim to generate the right results in the

first place
– Corrective methods that aim to detect errors and make corrections.

2-Sep-05 INF5150 INFUIT Haugen / Stølen 31

IN
F 5150

Development model

Owner User

Non-functional
requirements

Functional
requirements

Requirements

Developer

Developer

validate

validate

validate
verify

Functional
 design

Implementation
design

Design

hardware

software

Implementation

verify

needs

Refinement

Risk Analysis

2-Sep-05 INF5150 INFUIT Haugen / Stølen 32

IN
F 5150

Dialectic Software Development

Software Development is a process of learning
– once you have totally understood the system you are building, it is done

Learning is best achieved through conflict, not harmony
– discussions reveal problematic points
– silence hides critical errors

By applying different perspectives to the system to be designed
– inconsistencies may appear
– and they must be harmonized

Inconsistencies are not always errors!
– difference of opinion
– difference of understanding
– misunderstanding each other
– a result of partial knowledge

Reliable systems are those that have already met challenges

2-Sep-05 INF5150 INFUIT Haugen / Stølen 33

IN
F 5150

STAIRS – Steps To Analyze Interactions with
Refinement Semantics

supplementing

detailing

narrowing

Thanks to Microsoft clipart and Restaurant Bagatelle’s web-site

2-Sep-05 INF5150 INFUIT Haugen / Stølen 34

IN
F 5150

Refinement

Refine = to free (as metal, sugar, or oil) from impurities or unwanted
material

– here: to make more exact, to reduce the set of legal solutions
– in particular: to reduce the set of legal histories

The role of histories
– Histories model system runs
– Specifications are modeled by sets of histories

The need for a precise semantics
– Syntax, Semantics, Pragmatics

The assumption/guarantee paradigm
– The assumption describes the properties of the environment in which

the specified component is supposed to run
– The guarantee characterizes the constraints that the specified

component is required to fulfill whenever the specified component is
executed in an environment that satisfies the assumption

2-Sep-05 INF5150 INFUIT Haugen / Stølen 35

IN
F 5150

Three main notions of refinement

Property refinement
– requirements engineering: requirements are added to the specification

in the order they are captured and formalized
– incremental development: requirements are designed and implemented

in a step-wise incremental manner
Interface refinement

– type implementation: introducing more implementation-dependent data
types

– change of granularity: replacing one step of interaction by several, or the
other way around

Conditional refinement
– imposing boundedness: replacing unbounded resources by

implementable bounded resources
– change of protocol: replacing abstract communication protocols by more

implementation-oriented communication protocols

2-Sep-05 INF5150 INFUIT Haugen / Stølen 36

IN
F 5150

Objectives for the lectures on refinement

The two lectures on refinement will
– motivate and explain the basic instruments and principles for

defining notions of refinement
this includes

– using histories to model executions
– the notion of an observer
– understanding the assumption/guarantee principle

– explain the following refinement concepts in a UML setting
property refinement
interface refinement
conditional refinement

– demonstrate refinement in examples

2-Sep-05 INF5150 INFUIT Haugen / Stølen 37

IN
F 5150

Model-based security analysis

Risk analysis is a systematic use of available information to
– determine how often specified events may occur
– the magnitude of their consequences

Model-based security analysis is the tight integration of state-of-the art
modeling methodology in the security risk analysis process
Model-based security analysis is motivated by

– Precision improves the quality of security analysis results
– Graphical UML-like diagrams are well-suited as a medium for

communication between stakeholders involved in a security analysis;
the danger of throwing away time and resources on misconceptions is
reduced

– The need to formalize the assumptions on which the analysis depends;
this reduces maintenance costs by increasing the possibilities for reuse

– Provides a basis for tight integration of security analysis in the system
development process; this may considerably reduce development costs
since undesirable solutions are weeded out at an early stage

2-Sep-05 INF5150 INFUIT Haugen / Stølen 38

IN
F 5150

Security analysis

Model-based
security analysis

Graphical OO
modelling

Precise input
at the right level
of abstraction

Graphical models
as a medium for
communication

Documentation of
results and
assumptions

Three dimensions of model-based security analysis

2-Sep-05 INF5150 INFUIT Haugen / Stølen 39

IN
F 5150

Requirements
analysis

Properties Actors

Security analysis

Vulnerability Attacker

Requirements analysis versus security analysis

Use Case Diagram

register

login

choose

pay

guest

registered user

customer database

product database

Misuse Case Diagram

burglary

break

crash

customer
database

product
database

crook

guest

registered
user

customer
database

Product
database

crook

register

login

choose

pay

burglary

break

crash

Combined Use Case Diagram

2-Sep-05 INF5150 INFUIT Haugen / Stølen 40

IN
F 5150

Objectives for the lectures on security analysis

classify notions of dependability
introduce, motivate and explain the basic notions and
principles for risk management in general and security risk
analysis in particular
relate risk management to system development
describe the various processes involved in risk
management
motivate and illustrate model-based security analysis
present relevant standards
demonstrate the usage of concrete analysis methodology

2-Sep-05 INF5150 INFUIT Haugen / Stølen 41

IN
F 5150

Obligatory Exercise: Blind Group Date

Meeting a group of people that you do not know
– based on SMS-message ”subscription”
– mobile telephone positioning
– Trafikanten online transportation service

Specify the services with Sequence Diagrams
– perform proper refinements

Design the system with State Machines and Composite
Structures
– prove that the system is a refinement of the requirement

Perform a risk analysis of the system
Execute and demonstrate the system!

2-Sep-05 INF5150 INFUIT Haugen / Stølen 42

IN
F 5150

Obligatory Exercise: Tools (1)

Eclipse
Rational Software Modeler
– runs on Linux as well as Windows
– students can obtain copies for free

UML to JavaFrame transformer as plug-in to RSM
– push a button – executable UML! (Asbjørn Willersrud)

Supplied interfaces to
– PATS-lab for SMS-sending and positioning

Use only Telenor subscription mobiles!
– Trafikanten online database

2-Sep-05 INF5150 INFUIT Haugen / Stølen 43

IN
F 5150

Obligatory Exercise: Tools (2)

The CORAS-tool available as open source (LGPL-
license):
– http://coras.sourceforge.net/

Based on other open software (Apache Cocoon, eXist
XML database)

2-Sep-05 INF5150 INFUIT Haugen / Stølen 44

IN
F 5150

Obligatory exercise: Procedures

Project groups
– we put them together in a couple of weeks

Drop 1:
– Mandatory guidance by the assistants
– Hard deadline at 23.59
– Presentation with projector
– Criticism by another group (written) and by the assistants
– Public grading by lecturers

but this has no effect on the final grade

Drop 2:
– A baseline is given by the assistants
– otherwise it is very much the same story as Drop 1

2-Sep-05 INF5150 INFUIT Haugen / Stølen 45

IN
F 5150

INFUIT (INF 5150) in a nutshell

INF 5150

Software
engineering of

reactive systems

Model-based
security analysis

Modeling with
UML 2.0

Formal
techniques

