
8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

Sequence Diagrams

Version 050909



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

Sequence Diagrams

Sequence Diagrams are
– simple
– powerful
– readable
– used to describe interaction sequences

History
– Has been used for a number of years informally
– Standardized in 1992 in Z.120 (Message Sequence Charts - MSC)
– Last major revision of MSC is from 1999 (called MSC-2000)
– Formal semantics of MSC-96 is given in Z.120 Annex B

– Included in UML from 1999, but in a rather simple variant
– UML 2.0 http://www.uml.org/



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

Purpose

Emphasizes the interaction between objects indicating that 
the interplay is the most important aspect
– Often only a small portion of the total variety of behavior is 

described improve the individual understanding of an interaction
problem

Sequence Diagrams are used to ...
– document protocol situations,
– illustrate behavior situations,
– verify interaction properties relative to a specification,
– describe test cases,
– document simulation traces.



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

The example context: Dolly Goes To Town

Dolly is going to town and 
– wants to subscribe for bus schedules back home
– given her current position
– and the time of day.
– The service should not come in effect until a given time in the 

evening



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

The informal architecture

mobile
terminal

web
terminal

local
cache

information
provider

user
information pusher
(SMS sender, WAP portal)

local
ads

positioning

request

position

info

subscription

info

subscription

info info

ads

info info



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

Lifeline (MSC: Instance) – the “doers”

Lifeline head with name
the lifeline itself is anonymous, 

but its type is ServiceBase

Lifeline 
ordered from 
top to bottom

:ServiceBase



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

sd Authorization

:ServiceUser :ServiceBase :ServiceTerminal

Code

OK

OnWeb

OK

(Simple) Sequence Diagram

Messages have one send event, and one receive event.
– The send event must occur before the receive event.
– The send event is the result of an Action

Events are strictly ordered along a lifeline from top to bottom

The frame 
(UML 2)

The name of the interaction

Send Event

Receive Event

Message name



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

sd Authorization

:ServiceUser :ServiceBase :ServiceTerminal

Code

OK

OnWeb

OK

How many?

• 1, 2, 3, 4, 5, 6,..?

How many?

• 1, 2, 3, 4, 5, 6,..?

How many global traces are there in this diagram?

The only invariants:
– Messages have one send event, and one receive event. The send 

event must occur before the receive event.
– Events are strictly ordered along lifeline

independent!



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

Really counting the traces ...

sd Authorization

:ServiceUser :ServiceBase :ServiceTerminal

Code

OK

OnWeb

OK

1 2
34

5 6
7 8

1

2

3

4 5

5 7

76

7

8

6

8

5

6

8

4 6

76

7

8

6

8

4

7

8



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

sd Authorization

:ServiceBase :ServiceTerminal

OK

Code

OK

info
OnWeb

Asynchronous messages: Message Overtaking

asynchronous communication = when the sender does not wait for the 
reply of the message sent
Reception is normally interpreted as consumption of the message.
When messages are asynchronous, it is important to be able to 
describe message overtaking.

sending OnWeb
before sending Info

receiving OnWeb after 
receiving Info

notice 
message 
to/from 

environment



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

The context of a Sequence Diagram
The context is a Classifier with Composite Structure (of properties)

– Properties (parts) are represented by Lifelines
– Generic Parts of Collaborations must be bound to concrete Parts
– Concrete Parts of Classes can be Lifelines directly

In MSC (Message Sequence Charts) context is an “MSC document”
The concept of a context with internal structure leads to an aggregate hierarchy of 
entities (parts)

– We exploit this through the concept of Decomposition
GoHomeServiceContext

sd GoHome sd Authorization

:ServiceUser

:ServiceBase

:ServiceTerminal

ServiceUser

ServiceBase

ServiceTerminal



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

sd Authorization

:ServiceUser :ServiceBase
ref SB_Authorization :ServiceTerminal

Code

OK

OnWeb

OK

Decomposing a Lifeline relative to an Interaction

we want to look 
into this lifeline

this is the name of 
the diagram 

where we find the 
decomposition



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

sd Authorization

:ServiceUser :ServiceBase
ref SB_Authorization :ServiceTerminal

Code

OK

OnWeb

OK

The Decomposition

notice the 
correspondance!

notice the 
correspondance!

sd SB_Authorization

:Central

:Authorizer

Code

OK OnWeb

create

OK



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

sd SB_Authorization

:Central

:Authorizer

Code

OK OnWeb

create

OK

Lifeline creation and destruction
We would like to describe Lifeline creation and destruction
The idea here (though rather far fetched) is that the ServiceBase needs to create a new 
process in the big mainframe computer to perform the task of authorizing the received 
Code. We see a situation where several Authorizers work in parallel

creation Message

destruction



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

sd Authorization

:ServiceUser :ServiceBase :ServiceTerminal

Code

OK

OnWeb

OK

Synchronizing interaction
method call 
message

execution specification

reply



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

Basic Sequence Diagrams Summary

We consider mostly messages that are asynchronous, the 
sending of one message must come before the 
corresponding reception
UML has traditionally described synchronizing method calls 
rather than asynchronous communication
The events on a lifeline are strictly ordered
The distance between events is not significant.
The context of Interactions are classifiers
A lifeline (within an interaction) may be detailed in a 
decomposition
Dynamic creation and destruction of lifelines



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

More structure (UML 2.0 from MSC-96)

interaction uses – such that Interactions may be referenced 
within other Interactions
combined fragments – combining Interaction fragments to 
express alternatives, parallel merge and loops
better overview of combinations – High level Interactions 
where Lifelines and individual Messages are hidden
gates – flexible connection points between 
references/expressions and their surroundings



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

sd GoHome

:ServiceUser :ServiceBase :ServiceTerminal

ref GoHomeSetup

loop

ref
GoHomeInvocation

ref
GoHomeDismantle

References
interaction use



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

Combined fragments of Interaction

MSC-96: “inline expressions”
UML 2.0: “combined fragments”
We want to express
– choices: alternative, option, break
– parallel merge
– loops

We also want to add other operators
– negation
– critical region
– assertion

Other suggested operators that will not come in UML 2.0
– interrupt
– disrupt



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

:ServiceUser :ServiceBase :ServiceTerminal

sd GoHomeInvocation

:Clock

InvocationTime

TransportSchedule

loop

alt ScheduleIntervalElapsed

TransportSchedule

GetTransportSchedule

TransportSchedule

FetchSchedule

ref FindLocation

ref FindLocation

Combined fragment example

frame

operator

operand 
separator



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

sd GoHomeSetup

ref Authorization

ref FindLocation

sd

:ServiceUser :ServiceBase

SetHome

sd

:ServiceUser :ServiceBase

SetInvocationTime

SetTransportPreferences

Interaction Overview

references
start

flow line inline diagram

end

similar to 
activity diagram

sd GoHomeSetup

:ServiceUser :ServiceBase :ServiceTerminal

opt

ref FindLocation

SetHome

SetInvocationTime

SetTransportPreferences

ref Authorization



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

sd Authorization

:ServiceBase :ServiceTerminal

OK

Code

OK

info
OnWeb

sd GoHomeSetup

:ServiceUser :ServiceBase :ServiceTerminal

ref

Authorization

opt
ref FindLocation

SetHome

SetInvocationTime

SetTransportPreferences

Code

OK

OK

Gates

formal gateactual gate



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

sd GoHome

:ServiceUser :ServiceBase :ServiceTerminal

ref GoHomeSetup

loop

ref
GoHomeInvocation

ref
GoHomeDismantle

Summary: Dolly Goes To Town (1)

Interaction Interaction Use

sd GoHomeSetup

ref Authorization

ref FindLocation

sd

:ServiceUser :ServiceBase

SetHome

sd

:ServiceUser :ServiceBase

SetInvocationTime

SetTransportPreferences

Interaction 
Overview 
Diagram



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

sd Authorization

:ServiceUser :ServiceBase :ServiceTerminal

Code

OK

OnWeb

OK

sd SB_Authorization

:Central

:Authorizer

Code

OK OnWeb

create

OK

sd Authorization

:ServiceUser :ServiceBase
ref SB_Authorization :ServiceTerminal

Code

OK

OnWeb

OK

Dolly Goes To Town (2)

decomposed

decomposition

creation

destruction

gate

synchronizing



8-Sep-05 INF5150 INFUIT Haugen / Stølen

IN
F 5150

:ServiceUser :ServiceBase :ServiceTerminal

sd GoHomeInvocation

:Clock

InvocationTime

TransportSchedule

loop

alt ScheduleIntervalElapsed

TransportSchedule

GetTransportSchedule

TransportSchedule

FetchSchedule

ref FindLocation

ref FindLocation

Dolly Goes To Town (3)

Combined 
fragment

operator: 
loop

operator: 
choice

operand 
separator


