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Our goals

A good way of thinking for
– modelers
– programmers

such that their programs will become:
– rapidly made according to specification
– have high quality
– be efficient
– maintainable by competent persons
– be adaptive to a changing environment of requirements and third 

party software

This should apply to large and small programs
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Finite State Machines

Finite
– a finite number of states
– [here] a small number of named states

State
– a stable situation where the process awaits stimuli
– a state in a state machine represents the history of the execution

Machine
– that only a stimulus (signal, message) triggers behavior
– the behavior consists of executing transitions
– may also have local data
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The Knoble game

A game administrator controls the game
Invites the players
The players make a draw like:

The game administrator calculates the scores
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The Knoble context

Part

Part

input portoutput port

composite structure
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What happens?
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Player: first attempt
Initial state

(simple) state

trigger

effect

transition
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Player: why it is not sufficient
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Player: second solution
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GameAdmin: are these diagrams acceptable?
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GameAdmin: first attempt
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Demo Knoble2 (running JFTrace)
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UML JavaFrame Profile Model analysis

Object Model Property Model

subscA subscB subscA subscB

hook off
call
reply

class SubscA extends StateMachine
{ SubscB subscB;
  int stateIdle, stateBusy, ...;
};
class Idle extends State
{ int run()
  { ..... };
};
class IdleHookOff extends Transition
{ ... };

Trace
Process  State  Message  Next

subscA   Idle   hookoff Wait
subscB...Idle...call....Conv
subscA...Wait...reply...Conv
...

s
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describe

compare
program

execute

compare
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State Machines: unassailability?

Understandable
– think locally, act globally
– states represent compressed representation of execution history

Robust
– detect errors through discovering undefined transitions

Maintainable
– make additions and alterations with a minimum of ripple effects

Analyzable
– systems of state machines can be handled by model checkers
– compare sequence diagrams with state machine(s)
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PlayerSM: Compare these versions!

what if ’play_now’ is 
received here?

this state machine 
does not detect 

sequence errors!
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Knoble: Now we add another requirement

Assume that the Player may at any time receive a 
’suspend’ message from the GUI
This should have the effect that
– the player will not play
– until he/she receives a paper/stone/scissors message from GUI

then such a message is directly a move

We would like to make this change
– as compact as possible
– without changing much of what is already made functioning
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PlayerSM: Introducing Submachine states

Submachine state: 
almost the old 
implementation

transition triggered 
by suspend if not 
handled inside P

entry point transition fragment
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Playing: almost like the old Player with entry

entry point

transition fragment
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Demo Knoble4 (not running JFTrace)
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Entry and Exit behaviors
Entry behavior will 
execute whenever 
the state is entered
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Summary State Machines

State
– finite number
– simple or composite (submachine states)

Transition
– trigger
– effect

Exit and Entry Points
– interface points within a runtime transition

Exit and Entry Behaviors
– behavior to be executed every time the machine exits or enters 

the state

State machines may have variables (and parameters)
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UML and Java: JavaFrame - the solution

Java

JavaFrame

modeling by
programming

JavaFrameUML

Java

JavaFrame

mapping

UMLJavaFrame

Java

JavaFrame

transformation

Java

JavaFrame

UML

transformation
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Interacting Active 
Objects

INF 5150

UML to 
JavaFrame

transformation

Thread-safe, runtime 
effective, reentrant 
composite states 

Observation 
tool, input 

dialog 

2002 – 2004:
•ERICSSON:
•Avantel: Amigos
•UML 2.0 laboratory
•ARTS

JavaFrame – the object framework
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Experiences - The Lego Mindstorm experiment

socket mediators

sockets

sockets
client traceserver trace 

server client

control
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MultiTube

Tube 

Stimuli Response 

JavaFrame 6.92ms Trad. method 10.13ms

Experiences - The Performance Model


