
29-Sep-05 INF5150 INFUIT Haugen / Stølen 1

IN
F 5150

State Machines with automatic code 
generation to JavaFrame

Version 050923 Revision 1



29-Sep-05 INF5150 INFUIT Haugen / Stølen 2

IN
F 5150

Our goals

A good way of thinking for
– modelers
– programmers

such that their programs will become:
– rapidly made according to specification
– have high quality
– be efficient
– maintainable by competent persons
– be adaptive to a changing environment of requirements and third 

party software

This should apply to large and small programs



29-Sep-05 INF5150 INFUIT Haugen / Stølen 3

IN
F 5150

Finite State Machines

Finite
– a finite number of states
– [here] a small number of named states

State
– a stable situation where the process awaits stimuli
– a state in a state machine represents the history of the execution

Machine
– that only a stimulus (signal, message) triggers behavior
– the behavior consists of executing transitions
– may also have local data



29-Sep-05 INF5150 INFUIT Haugen / Stølen 4

IN
F 5150

The Knoble game

A game administrator controls the game
Invites the players
The players make a draw like:

The game administrator calculates the scores



29-Sep-05 INF5150 INFUIT Haugen / Stølen 5

IN
F 5150

The Knoble context

Part

Part

input portoutput port

composite structure



29-Sep-05 INF5150 INFUIT Haugen / Stølen 6

IN
F 5150

What happens?



29-Sep-05 INF5150 INFUIT Haugen / Stølen 7

IN
F 5150

Player: first attempt
Initial state

(simple) state

trigger

effect

transition



29-Sep-05 INF5150 INFUIT Haugen / Stølen 8

IN
F 5150

Player: why it is not sufficient



29-Sep-05 INF5150 INFUIT Haugen / Stølen 9

IN
F 5150

Player: second solution



29-Sep-05 INF5150 INFUIT Haugen / Stølen 10

IN
F 5150

GameAdmin: are these diagrams acceptable?



29-Sep-05 INF5150 INFUIT Haugen / Stølen 11

IN
F 5150

GameAdmin: first attempt



29-Sep-05 INF5150 INFUIT Haugen / Stølen 12

IN
F 5150

Demo Knoble2 (running JFTrace)



29-Sep-05 INF5150 INFUIT Haugen / Stølen 13

IN
F 5150

UML JavaFrame Profile Model analysis

Object Model Property Model

subscA subscB subscA subscB

hook off
call
reply

class SubscA extends StateMachine
{ SubscB subscB;
  int stateIdle, stateBusy, ...;
};
class Idle extends State
{ int run()
  { ..... };
};
class IdleHookOff extends Transition
{ ... };

Trace
Process  State  Message  Next

subscA   Idle   hookoff Wait
subscB...Idle...call....Conv
subscA...Wait...reply...Conv
...

s
p
e
c
i
f
i
c
a
t
i
o
n

d
e
s
i
g
n

describe

compare
program

execute

compare



29-Sep-05 INF5150 INFUIT Haugen / Stølen 14

IN
F 5150

State Machines: unassailability?

Understandable
– think locally, act globally
– states represent compressed representation of execution history

Robust
– detect errors through discovering undefined transitions

Maintainable
– make additions and alterations with a minimum of ripple effects

Analyzable
– systems of state machines can be handled by model checkers
– compare sequence diagrams with state machine(s)



29-Sep-05 INF5150 INFUIT Haugen / Stølen 15

IN
F 5150

PlayerSM: Compare these versions!

what if ’play_now’ is 
received here?

this state machine 
does not detect 

sequence errors!



29-Sep-05 INF5150 INFUIT Haugen / Stølen 16

IN
F 5150

Knoble: Now we add another requirement

Assume that the Player may at any time receive a 
’suspend’ message from the GUI
This should have the effect that
– the player will not play
– until he/she receives a paper/stone/scissors message from GUI

then such a message is directly a move

We would like to make this change
– as compact as possible
– without changing much of what is already made functioning



29-Sep-05 INF5150 INFUIT Haugen / Stølen 17

IN
F 5150

PlayerSM: Introducing Submachine states

Submachine state: 
almost the old 
implementation

transition triggered 
by suspend if not 
handled inside P

entry point transition fragment



29-Sep-05 INF5150 INFUIT Haugen / Stølen 18

IN
F 5150

Playing: almost like the old Player with entry

entry point

transition fragment



29-Sep-05 INF5150 INFUIT Haugen / Stølen 19

IN
F 5150

Demo Knoble4 (not running JFTrace)



29-Sep-05 INF5150 INFUIT Haugen / Stølen 20

IN
F 5150

Entry and Exit behaviors
Entry behavior will 
execute whenever 
the state is entered



29-Sep-05 INF5150 INFUIT Haugen / Stølen 21

IN
F 5150

Summary State Machines

State
– finite number
– simple or composite (submachine states)

Transition
– trigger
– effect

Exit and Entry Points
– interface points within a runtime transition

Exit and Entry Behaviors
– behavior to be executed every time the machine exits or enters 

the state

State machines may have variables (and parameters)



29-Sep-05 INF5150 INFUIT Haugen / Stølen 22

IN
F 5150

UML and Java: JavaFrame - the solution

Java

JavaFrame

modeling by
programming

JavaFrameUML

Java

JavaFrame

mapping

UMLJavaFrame

Java

JavaFrame

transformation

Java

JavaFrame

UML

transformation



29-Sep-05 INF5150 INFUIT Haugen / Stølen 23

IN
F 5150Asynch. 

Interacting Active 
Objects

INF 5150

UML to 
JavaFrame

transformation

Thread-safe, runtime 
effective, reentrant 
composite states 

Observation 
tool, input 

dialog 

2002 – 2004:
•ERICSSON:
•Avantel: Amigos
•UML 2.0 laboratory
•ARTS

JavaFrame – the object framework



29-Sep-05 INF5150 INFUIT Haugen / Stølen 24

IN
F 5150

Experiences - The Lego Mindstorm experiment

socket mediators

sockets

sockets
client traceserver trace 

server client

control



29-Sep-05 INF5150 INFUIT Haugen / Stølen 25

IN
F 5150

MultiTube

Tube 

Stimuli Response 

JavaFrame 6.92ms Trad. method 10.13ms

Experiences - The Performance Model


