
13-Oct-05 INF5150 INFUIT Haugen / Stølen 1

IN
F 5150

System Development Part 1

Version 051014

13-Oct-05 INF5150 INFUIT Haugen / Stølen 2

IN
F 5150

What shall we learn in school today?

Why your java programs fail
– The solution

thinking in a way corresponding to how your program will work

Dialectics – making conflicts drive the development
– early conflicts are less dangerous
– people with complementary competence is fruitful
– complementary views help see the whole picture

The need for harmonization

13-Oct-05 INF5150 INFUIT Haugen / Stølen 3

IN
F 5150

Why your normal Java program fails

- or how to think in correspondence with how
the computer works

13-Oct-05 INF5150 INFUIT Haugen / Stølen 4

IN
F 5150

Agreeing on which movie to watch

A group of persons are going to agree on which movie to
watch this evening
There is only a small number of movies (less than the
number of persons). One can assume that the decision
can be based on democratic principles: the movie with
most votes win.
We will use three different ways of communication:

– (half-) duplex two-party telephony (synchronizing
communication)

– conference call (synchronous communication)
– SMS (asynchronous communication)

13-Oct-05 INF5150 INFUIT Haugen / Stølen 5

IN
F 5150

Synchronizing communication

pers1 pers2 pers3

msc movie1

whatmovie

whatmovie(p2:=m2)

whatmovie

whatmovie(p3:=m1)

‘decide’
tickets(3,m1)

tickets(idno)

pers1 is the
master
pers2 and pers3
are slaves
pers1 cannot
perform anything
while pers2 and
pers3 are trying to
decide for
themselves

13-Oct-05 INF5150 INFUIT Haugen / Stølen 6

IN
F 5150

Synchronous communication

pers1 pers2 pers3

msc movie2

whatmovie

movie(p2:=m2)

‘decide’
tickets(3,m1)

pers1 is the
central
pers2 and pers2
are co-workers
neither of the
persons can do
anything while the
communication
lasts

(this is informal
MSC since MSC-
2000 have no
mechanisms for
synchronous

i ti)

movie(m2=:p2)

movie(p3:=m1)movie(p3:=m1)

13-Oct-05 INF5150 INFUIT Haugen / Stølen 7

IN
F 5150

Asynchronous communication

pers1 pers2 pers3

msc movie3

whatmovie

movie(p2:=m2)

movie(p3:=m1)

‘decide’
ask_tickets(3,m1)

tickets(idno)

pers1 is the
central
pers2 and pers2
are co-workers
pers1 can do
other kinds of
work while pers2
and pers3 decide
their opinions
pers2 and pers3
can make up their
opinion in parallel

whatmovie

13-Oct-05 INF5150 INFUIT Haugen / Stølen 8

IN
F 5150

Threads

Threads are flows of control
– the metaphor is that the threads go through the web of objects like a

thread in the fabric of a shirt that is sewn
Threads are said to be “light weight processes”?!

– threads are not operating system tasks
– threads refer to the same address space (object space)
– threads must be considered concurrent

What is the canonical mental model of threads?
– this is a very hard question, and we shall try and look at this

Are there simple ways to ensure thread-safe programming in Java?
– there is no simple way, but some approaches are safer than others

Threads can be used to enforce priority
– but be conscious about what you can achieve through priority

13-Oct-05 INF5150 INFUIT Haugen / Stølen 9

IN
F 5150

Threads 1

pers1 pers2 pers3

msc movie1

whatmovie

whatmovie(p2:=m2)

whatmovie

whatmovie(p3:=m1)

‘decide’
tickets(3,m1)

tickets(idno)

one thread
in fact the whole
system is
sequential!
anybody can
program this in
Java

13-Oct-05 INF5150 INFUIT Haugen / Stølen 10

IN
F 5150

Threads 2

pers1 pers2 pers3

msc movie3

whatmovie

movie(p2:=m2)

movie(p3:=m1)

‘decide’
ask_tickets(3,m1)

tickets(idno)

there are two
independent threads
of control
in fact there could
be even more since
pers2 and pers3
could have had
other business to
attend to!
as it is, it is a fairly
simple “fork” / “join”
and quite simple to
program
such a local fork and
join is still almost
sequential

whatmovie

13-Oct-05 INF5150 INFUIT Haugen / Stølen 11

IN
F 5150

Threads 2 (more)

pers1 pers2 pers3

msc movie3

whatmovie

movie(p2:=m2)

movie(p3:=m1)

‘decide’
ask_tickets(3,m1)

tickets(idno)

Problems
– technical
– conceptual

If pers1 following
messages movie
also updates the
count for each
movie, there is a
concurrent update
problem

Who are the
threads? Are they
concepts?

whatmovie

13-Oct-05 INF5150 INFUIT Haugen / Stølen 12

IN
F 5150

Threads 3 (JavaFrame / UML / SDL)

pers1 pers2 pers3

msc movie3

whatmovie

movie(p2:=m2)

movie(p3:=m1)

‘decide’
ask_tickets(3,m1)

tickets(idno)

pers1, pers2 and
pers3 are all
ActiveObject
they are
StateMachines
pers1 is Leader
pers2,pers3 are
Followers
There is one (or
more Threads)
controlled by
Schedulers
Schedulers are
hidden for the
programmer

whatmovie

Scheduler

13-Oct-05 INF5150 INFUIT Haugen / Stølen 13

IN
F 5150

Object Orientation

The objects are the performers / executors
They themselves perform their methods
In Java in fact the Threads are executing the methods
This means that the same object may be executed from
different Threads, but conceptually being one active
object in itself

13-Oct-05 INF5150 INFUIT Haugen / Stølen 14

IN
F 5150

Why we make errors with Threads in Java

You use another Thread to achieve higher speed
– usually wrong, if it is on the same machine, it will slow the

machine down, not speed it up
You use several Threads, but lose track of them because
they are not associated closely with concepts

– You use several Threads, but your concept of the ActiveObjects
are not associated with them

You are using a synchronizing approach and believe that
the program is essentially sequential, but alas...

– another programmer does the same, but your Threads interact
without synchronization on some obscure common object

You know about Thread problems and use synchronized
methods to a large degree

– either you run into deadlock, or very inefficient programs

13-Oct-05 INF5150 INFUIT Haugen / Stølen 15

IN
F 5150

Why use several Threads in Java?

There are real external stimuli that should be handled according to
interrupts

– it would be better if all (or many) interrupts could be handled by the
same Thread since Threads consume resources

There are some parts of the system that requires better priority than
the rest

– Giving priority could give improved performance
duration of transitions vary considerably

– Certain urgent operations are done in time,
– but priorities should not be used in reasoning about the overall

functionality
The system is physically distributed over several machines

– Then it is obvious that we need more than one JVM (Java Virtual
Machine)

13-Oct-05 INF5150 INFUIT Haugen / Stølen 16

IN
F 5150

Why UML 2 / JavaFrame is different

The predominant model of UML 2 State Machines /
JavaFrame is that of telecom:

– concurrency is an opportunity, not a mere threat
Execution logic is tied to the programming concepts
Execution performance discriminates between the
programmers’ level and the execution platform

– Threads are dealt with separately from the functional logic
High degree of independence implies:

– parallel design possible
– modifiability / flexibility
– early simulation / prototyping
– known validation approaches

In short: dependability with less efforts

13-Oct-05 INF5150 INFUIT Haugen / Stølen 17

IN
F 5150

Dialectic System Development

how to take advantage of conflicts

13-Oct-05 INF5150 INFUIT Haugen / Stølen 18

IN
F 5150Semantics: explained understandingUML

Formal Semantics: mathematical notationMSC

Automatic semantics: machine-orientedSDL

Syntax: given syntax with illustrative add-onsVisio

Illustrations: one notation for each picture, natural language resemblence criticalDoc. figs.

The language maturity staircase

13-Oct-05 INF5150 INFUIT Haugen / Stølen 19

IN
F 5150

Access Control System

13-Oct-05 INF5150 INFUIT Haugen / Stølen 20

IN
F 5150

Domain Statement

Area of concern
– Access control has to do with controlling the access of users to access

zones. Only a user with known identity and correct access right shall be
allowed to enter into an access zone. Other users shall be denied
access.

Stakeholders
– Users of the system, those responsible for the security of the access

zones.
Services

– The user will enter an access zone through an access point.
– A supervisor will have the ability to insert new users in the system.
– Users shall be able to change their secret code.

The authentication of a user shall be established by some means for secret
personal identification (code). The authorisation is based upon the user
identity and access rights associated with the user.

13-Oct-05 INF5150 INFUIT Haugen / Stølen 21

IN
F 5150

Informal specification:
–”Users shall be able to change

their secret code”

aUser
ChangePIN

Service: Change PIN

13-Oct-05 INF5150 INFUIT Haugen / Stølen 22

IN
F 5150

Make More Precise

formalize
– move the description to a more formal language

refine
– narrow

add more properties to make it less ambiguous
– supplement

add new aspects, consider supplementary scenarios

13-Oct-05 INF5150 INFUIT Haugen / Stølen 23

IN
F 5150

service PIN Change

• Users shall be able to change their
personal identification

• The User shall be able to choose his new
PIN

• The Card shall be validated by the old
PIN before a new PIN can be given. The
new PIN shall subsequently also be
validated.

narrowing

supplementing

Consistent?

Improve Precision: Service and Role orientation

formalizingsd PIN_Change_OK

User PINChanging

ChangePIN()

EnterOldPIN()

OldPIN()

EnterNewPIN()

NewPIN()

OK()

13-Oct-05 INF5150 INFUIT Haugen / Stølen 24

IN
F 5150

Interaction occurrence (use)

break expression

continuation

Supplementing
sd PIN_Change

User PINChanging

ChangePINinvocref

ValidatePINref

break OldPIN_NOK()

GiveNewPINref

ValidatePINref

break NewPIN_NOK()

Idle

13-Oct-05 INF5150 INFUIT Haugen / Stølen 25

IN
F 5150

The user will enter an access zone through an access point

UserAccess

sd UserAccess

User_Accepted
ref

User_not_accepted
ref

sd User_Accepted

User AccessGranting

PIN()

OK()

sd User_not_accepted

User AccessGranting

PIN()

NOK()

13-Oct-05 INF5150 INFUIT Haugen / Stølen 26

IN
F 5150

New User
A supervisor will have the ability to insert new users in the system

sd New_User

NewUser Supervisor Authorizer

requestPIN() givePIN()

PIN()

13-Oct-05 INF5150 INFUIT Haugen / Stølen 27

IN
F 5150

AccessZone

AccessPoint
Name
Number
AccessKey

1..n

1

+boundary 1..n

1

User

*

*

*

*

* ** *

Improve Precision: (Domain) Object Models

By simply applying UML to the
domain statement, we may get
a first class model

13-Oct-05 INF5150 INFUIT Haugen / Stølen 28

IN
F 5150

who?
plays

User
plays

Which object plays each role?

AccessGranting PINchanging

Supervisor

Authorizer

User

NewUser

Casting

13-Oct-05 INF5150 INFUIT Haugen / Stølen 29

IN
F 5150

User

AccessZone
*

*

*

*
AccessPoint

1..n

1

+boundary 1..n

1

* ** *

Authorizer

*
1

+controlledZone
*

1

*
1

*+configurator
1

Harmonizing with object model (UML)

13-Oct-05 INF5150 INFUIT Haugen / Stølen 30

IN
F 5150

Card

User
(from DomainModel)

AccessPoint
(from DomainModel) *

*

*

*

Authorizer
(from DomainModel)

*

1

*

+configurator
1

Door

+controlledDoor

AccessZone
(from DomainModel) *

*

*

*

1..n

1

+boundary 1..n

1

*
1

+controlledZone
*

1

+accessVia

System orientation – becoming more specific

Card

Operator

Door

User
(from DomainModel)

AccessZone
(from DomainModel)

ACsystem

*

1

+controlledZone *

1

13-Oct-05 INF5150 INFUIT Haugen / Stølen 31

IN
F 5150

ACContext

sd
UserAccess

sd
PINChange

sd
NewUser

ACSystem

User

NewUser

Supervisor

sd
EstablishAccess

sd
OpenDoor

sd
GivePIN

class name

composite structure

defining interactions

utility interactions

The Access Control Context as UML Class

13-Oct-05 INF5150 INFUIT Haugen / Stølen 32

IN
F 5150

sd New_User

NewUser Supervisor ___ACSystem___
ref AC_NewUser

EstablishAccess
("NotSupervisor")

ref

alt
"Sorry"()

CardId()

GivePINref

Card(Cid, PIN)()

Idle

Idle

[Wrong PIN]

[PIN OK]

sd UserAccess

___ACSystem___
ref AC_UserAccess

NewUser

EstablishAccess ("Illegal PIN")ref

opt

"Please Enter!"()

OpenDoorref

Idle

Idle

[PIN OK]

Similarities

System services

13-Oct-05 INF5150 INFUIT Haugen / Stølen 33

IN
F 5150

Need for generalization: Entry

On what connectors is
EstablishAccess applied?

– between the AccessPoint and a
normal User

– between the Console and the
Supervisor user

sd EstablishAccess(String txt, inst User)

User _______ACSystem_______
ref AC_EstablishAccess(txt)

CardId()

GivePINref

loop<0,3>
"Try Again"()

GivePINref

CardOut()

alt
msg(txt)()

Idle

Idle

PIN OK

 ACSystem

e

e

v
a

c
a

e

e

aut: Authorizer[2]

c: Console

d

floor:integer [0..4]

ap: AccessPoint[2..100]

d

/floor: Integer {0..4}

13-Oct-05 INF5150 INFUIT Haugen / Stølen 34

IN
F 5150

Harmonizing: Entry, AccessPoint and Console
sd AC_EstablishAccess(String txt)

___________Entry___________ Authorizer
ref Entry_EstablishAccess(txt)

CardId()

AC_GivePINref

loop<0,3>

"Try Again"()

CardOut()

alt
msg(txt)()

Digit()

AccLevel(m)()

AC_GivePINref
Digit()

Code(Cid, PIN)()

AccLevel(n)()

Code(Cid, PIN)()

Idle

Idle

PIN OK

+UserAccess() : sd
+PINChange() : sd
+NewUser() : sd
#EstablishAccess() : sd
#OpenDoor() : sd
#GivePIN() : sd

-ACSystem : Lifeline
-User : Lifeline
-Supervisor : Lifeline
-NewUser : Lifeline

ACContext

+AC_UserAccess() : sd
+AC_PINChange() : sd
+AC_NewUser() : sd
#AC_EstablishAccess() : sd
#AC_OpenDoor() : sd
#AC_GivePIN() : sd

-AccessPoint : Lifeline
-Console : Lifeline
-Authorizer : Lifeline

ACSystem

-1

-*

+AP_UserAccess() : sd
-Door : Lifeline

AccessPoint

+Console_NewUser() : sd
+Console_PINChange() : sd

Console

+Entry_EstablishAccess() : sd
#Entry_GivePIN() : sd

-Panel : Lifeline
-Controller : Lifeline

Entry

-

1

-

*

-

1 -

*

13-Oct-05 INF5150 INFUIT Haugen / Stølen 35

IN
F 5150

The Entry class hierarchy
Entry

sd
Entry_EstablishAccess

sd
Entry_GivePIN

p:Panel c:Controller

Controller Panel

AccessPoint /* inherits Entry */

sd
AP_UserAccess

d:Doorc:Controller

<<redefined>>
Controller

Console /*inherits Entry */

sd
Console_NewUser

sd
Console_PINChange

<<redefined>>
Controller

13-Oct-05 INF5150 INFUIT Haugen / Stølen 36

IN
F 5150

msc PIN_Change
ACsystem decomposed

as AC_PIN_Change

EstablishAccess

GivePIN

msc EstablishAccess

msc AC_PIN_Change
B

AC_EstablishAccess

AC_GivePIN

C
msc AC_EstablishAccess

B C

decomposition

reference

ACsystem decomposed
as AC_EstablishAccess

Detailing through commutative decomposition

13-Oct-05 INF5150 INFUIT Haugen / Stølen 37

IN
F 5150

Change PIN

Authorizer

sd AC_PINChange

_______Console_______
ref Console_PINChange

AccessPoint

AC_EstablishAccess("Illegal PIN")
ref

opt
"Give new PIN"()

AC_GivePINref

"Give PIN again"()

 AC_GivePINref

"Wrong PIN"()

Cardid,Digit, "Try again", msg()

alt

NewCode(Cid,PIN)()

Digit()

Digit()

Idle

[PIN OK]

[wrong PIN]

[else]

Idle

sd PINChange

___ACSystem___
ref AC_PINChange

User

EstablishAccess ("Illegal PIN")ref

opt

"Give new PIN"()

GivePINref

"Give PIN again"()

GivePINref

opt
"Wrong PIN"()

Idle

Idle

[PIN OK]

[wrong PIN]

Decomposition

13-Oct-05 INF5150 INFUIT Haugen / Stølen 38

IN
F 5150

Commutative Decomposition

sd EstablishAccess(String txt, inst User)

User _______ACSystem_______
ref AC_EstablishAccess(txt)

CardId()

GivePINref

loop<0,3>
"Try Again"()

GivePINref

CardOut()

alt
msg(txt)()

Idle

Idle

PIN OK

sd AC_EstablishAccess(String txt)

___________Entry___________ Authorizer
ref Entry_EstablishAccess(txt)

CardId()

AC_GivePINref

loop<0,3>

"Try Again"()

CardOut()

alt
msg(txt)()

Digit()

AccLevel(m)()

AC_GivePINref
Digit()

Code(Cid, PIN)()

AccLevel(n)()

Code(Cid, PIN)()

Idle

Idle

PIN OK

Decomposition

13-Oct-05 INF5150 INFUIT Haugen / Stølen 39

IN
F 5150

Verification 1: Model checking PIN Change in Panel

sd Console_PINChange

PanelController

Entry_EstablishAccess("Illegal PIN")

ref

opt "Give new PIN"()

Entry_GivePINref

"Give PIN again"()

Entry_GivePINref

"Wrong PIN"()

Cardid,Digit, "Try again", msg()

alt

NewCode(Cid,PIN)()

msg("Give new PIN")()

msg("Give PIN again")()

GivePIN()

GivePIN()

Digit()

Digit()

Code(Cid, PIN)()

msg("Wrong PIN")()

Code(Cid, PIN)()

Idle

[PIN OK]

Idle

[wrong PIN]

sd Entry_EstablishAccess(String txt)

Panel Controller

CardId()

Entry_GivePINref

loop<0,3>

"Try Again"()

CardOut()

alt
msg(txt)()

Digit()

msg("Try Again")()

Entry_GivePINref
Digit()

Code(Cid, PIN)()

AccLevel(n)()

Code(Cid, PIN)() Code(Cid, PIN)()

AccLevel(m)()

GivePIN()

Code(Cid,PIN)()

CardOut()

msg(txt)()

Idle

Idle

PIN OK

13-Oct-05 INF5150 INFUIT Haugen / Stølen 40

IN
F 5150

Panel: UML State Machine, GivePIN as a method

sm Panel
AllPanel

NoCard

OneCard

cardid(cid)
/ GivePIN, ^code(cid,pin)

givePIN / GivePIN, ^code(cid,pin)

cardout /
cardout

msg(t)/
”t”

H

13-Oct-05 INF5150 INFUIT Haugen / Stølen 41

IN
F 5150

Model checking continued....
sd Entry_EstablishAccess(String txt)

Panel Controller

CardId()

Entry_GivePINref

loop<0,3>

"Try Again"()

CardOut()

alt
msg(txt)()

Digit()

msg("Try Again")()

Entry_GivePINref
Digit()

Code(Cid, PIN)()

AccLevel(n)()

Code(Cid, PIN)() Code(Cid, PIN)()

AccLevel(m)()

GivePIN()

Code(Cid,PIN)()

CardOut()

msg(txt)()

Idle

Idle

PIN OK

sm Panel
AllPanel

NoCard

OneCard

cardid(cid)
/ GivePIN, ^code(cid,pin)

givePIN / GivePIN, ^code(cid,pin)

cardout /
cardout

msg(t)/
”t”

H

13-Oct-05 INF5150 INFUIT Haugen / Stølen 42

IN
F 5150

sm Panel
AllPanel

NoCard

OneCard

cardid(cid)
/ GivePIN, ^code(cid,pin)

givePIN / GivePIN, ^code(cid,pin)

cardout /
cardout

msg(t)/
”t”

H

sd Entry_EstablishAccess(String txt)

Panel Controller

CardId()

Entry_GivePINref

loop<0,3>

"Try Again"()

CardOut()

alt
msg(txt)()

Digit()

msg("Try Again")()

Entry_GivePINref
Digit()

Code(Cid, PIN)()

AccLevel(n)()

Code(Cid, PIN)() Code(Cid, PIN)()

AccLevel(m)()

GivePIN()

Code(Cid,PIN)()

CardOut()

msg(txt)()

Idle

Idle

PIN OK

Model checking continued....

13-Oct-05 INF5150 INFUIT Haugen / Stølen 43

IN
F 5150

When EstablishAccess has elapsed,
Panel is in state NoCard, but it receives
GivePIN!

Model checking continued....
sd Console_PINChange

PanelController

Entry_EstablishAccess("Illegal PIN")

ref

opt "Give new PIN"()

Entry_GivePINref

"Give PIN again"()

Entry_GivePINref

"Wrong PIN"()

Cardid,Digit, "Try again", msg()

alt

NewCode(Cid,PIN)()

msg("Give new PIN")()

msg("Give PIN again")()

GivePIN()

GivePIN()

Digit()

Digit()

Code(Cid, PIN)()

msg("Wrong PIN")()

Code(Cid, PIN)()

Idle

[PIN OK]

Idle

[wrong PIN]

sm Panel
AllPanel

NoCard

OneCard

cardid(cid)
/ GivePIN, ^code(cid,pin)

givePIN / GivePIN, ^code(cid,pin)

cardout /
cardout

msg(t)/
”t”

H

13-Oct-05 INF5150 INFUIT Haugen / Stølen 44

IN
F 5150

sm Panel
AllPanel

NoCard

OneCard

cardid(cid)
/ GivePIN, ^code(cid,pin)

givePIN / GivePIN, ^code(cid,pin)

cardout /
cardout

msg(t)/
”t”

H

sd Console_PINChange

PanelController

Entry_EstablishAccess("Illegal PIN")

ref

opt "Give new PIN"()

Entry_GivePINref

"Give PIN again"()

Entry_GivePINref

"Wrong PIN"()

Cardid,Digit, "Try again", msg()

alt

NewCode(Cid,PIN)()

msg("Give new PIN")()

msg("Give PIN again")()

GivePIN()

GivePIN()

Digit()

Digit()

Code(Cid, PIN)()

msg("Wrong PIN")()

Code(Cid, PIN)()

Idle

[PIN OK]

Idle

[wrong PIN]

When EstablishAccess has elapsed,
Panel is in state NoCard, but it receives
GivePIN!

??

??

Model checking continued....

13-Oct-05 INF5150 INFUIT Haugen / Stølen 45

IN
F 5150

sd PINChange

___ACSystem___
ref AC_PINChange

User

EstablishAccess ("Illegal PIN")ref

opt

"Give new PIN"()

GivePINref

"Give PIN again"()

GivePINref

opt
"Wrong PIN"()

CardOut()

Idle

[wrong PIN]

Idle

[PIN OK]

We decide to move CardOut from

EstablishAccess to the end of

PIN_Change

Harmonizing

13-Oct-05 INF5150 INFUIT Haugen / Stølen 46

IN
F 5150

Are we then certain that AccessPoint’s
Controller is perfect?

sd: User Access vs sm: Controller = OK!

The User opens the door exactly when the timer
expires. door+opened in input port

Verification 2: AccessPoint’s Controller

Idle

Opening

Closing

Code / EstablishAccLev(...),CardOut

[acclev>0] / msg("Please Enter"),Unlock,StartTimer(door, now+10)

[acclev<=0] / msg("No Entry")

Opened / StartTimer(door, now+30)

after: door/ Lock

Closed / StopTimer(door),Lock after: door/ Alarm

sm Controller

Door

sd AP_UserAccess

Controller

EstablishAccess ("Illegal
PIN")

ref

opt

"Please Enter!"()

AP_OpenDoorref

CardId, Digit()

"try again", msg()

Code()

AccLev()

CardOut()

msg("Please Enter")()

Open()

Idle

Idle

[PIN OK]

User

13-Oct-05 INF5150 INFUIT Haugen / Stølen 47

IN
F 5150

• Sequence Diagrams are not
suited to uncover all possible
variants of interaction

• State Machines (JavaFrame or
UML 2) supported by
automatic techniques can find
unwanted signaling
combinations

• There are several techniques to
evaluate projections of
processes to uncover the
complexity of the software

Verification 3: Detecting default transitions

Idle

Opening

Closing

Code / EstablishAccLev(...),CardOut

[acclev>0] / StartTimer(door, now+10),msg("Please Enter"),Unlock

[acclev<=0] / msg("No Entry")

Opened / StartTimer(door, now+30)
after: door/ ask_closed

Closed / StopTimer(door),Lock

after: door/ Alarm

sm Controller

Opened

13-Oct-05 INF5150 INFUIT Haugen / Stølen 48

IN
F 5150

Dialectic Software Development

Software Development is a process of learning
– once you have totally understood the system you are building, it is done

Learning is best achieved through conflict, not harmony
– discussions reveal problematic points
– silence hides critical errors

By applying different perspectives to the system to be designed
– inconsistencies may appear
– and they must be harmonized

Inconsistencies are not always errors!
– difference of opinion
– difference of understanding
– misunderstanding each other
– a result of partial knowledge

Reliable systems are those that have already met challenges

