
INF 5150 2006 / / Foil 1 Ketil StølenØystein Haugen

Refinement – basic concepts and ideas

September 22, 2006

INF 5150 2006 / / Foil 2 Ketil StølenØystein Haugen

Objectives for the lectures on refinement

The two lectures on refinement aim to
– to motivate and explain a basic apparatus to define and relate the

notions of refinement
this includes

– representing executions by traces
– explaining the significance of a notion of observation
– outlining the assumption-guarantee paradigm

– introduce and related the following notions of refinement
supplementing
narrowing
detailing
property refinement
interface refinement

– Illustrate the use of these notions of refinement
the interplay between specification and refinement

INF 5150 2006 / / Foil 3 Ketil StølenØystein Haugen

The role of refinement

System development makes use of refinement as a means to check
and document incremental steps aiming to

– reduce the set of legal implementations
– introduce error handling
– introduce time constraints
– introduce finer granularity of interaction and execution
– introduce implementation dependent data types
– introduce implementation oriented communication protocols
– introduce constraints on unlimited resources
– extend the input domain

INF 5150 2006 / / Foil 4 Ketil StølenØystein Haugen

system

Why refinement is important

Systems of today are large and complex – abstraction is a
necessary means to

– explain what the systems do
– explain how the systems are built
– distinguish the essentials from the inessential
– decompose large and complicated aspects into small more easily

understandable entities
– extract specialized system views

Formal documentation gives new possibilities

Refinement
– relates system descriptions at different levels of abstraction
– connects and relates different system views
– provides a foundation for verifications and validations

INF 5150 2006 / / Foil 5 Ketil StølenØystein Haugen

enterprise computation engineering technologyinformation

Design specification decomposed into views

implementation

Requirements
specification

User
documentation

Why refinement must be documented

INF 5150 2006 / / Foil 6 Ketil StølenØystein Haugen

Documenting refinement

Precision is just as important when we document refinements as
when we write specifications
Refinements can be documented using standard specification
languages

– in INF 5150 we will use UML for this purpose

Formal documentation of refinements facilitates integrated
analysis, validation, testing and verification

INF 5150 2006 / / Foil 7 Ketil StølenØystein Haugen

Three main concepts of language theory

Syntax
– The relationship between symbols or groups of symbols independent of

content, usage and interpretation

Semantics
– The rules and conventions that are necessary to interpret and

understand the content of language constructs

Pragmatics
– The study of the relationship between symbols or groups of symbols

and their interpretation and usage

INF 5150 2006 / / Foil 8 Ketil StølenØystein Haugen

Set of syntactically correct
expressions in the
language to be explained

Set of syntactically
correct expressions in a
language that is well-
understood

Semantic relation

Relates
expressions

that need
interpretation
to expressions
that are well-
understood

What does it
mean that a
language is well-
understood?

Semantic relation

INF 5150 2006 / / Foil 9 Ketil StølenØystein Haugen

For a specification language these
are defined with respect to a
notion of observation

Of the same meaning

The need for a notion of observation

A semantic relation will define an equivalence relation on the
language that should be understood

INF 5150 2006 / / Foil 10 Ketil StølenØystein Haugen

May our notion of observation be
implemented by a human being?

Definition of a notion of observation

May observe only external
behavior
May observe any potential
behavior
May observe time with respect
to a global clock
May observe safety properties

– Always falsified by a partial
execution

May observe liveness
– Falsified only by complete

executions

INF 5150 2006 / / Foil 11 Ketil StølenØystein Haugen

Assumption-guarantee paradigm

Well-known specification technique to facilitate modularity
– appeared first with pre-post specifications in the 60ies
– since then taken further and adapted in many directions
– referred to as: pre-post, rely-guarantee, assumption-commitment,

assumption-guarantee, contracts, goal-means-task

Motivation:
– The behavior of a system component depends on the context it is

executed in
– Not all contexts are equally interesting

The assumption describes expected input
– The input that can be produced by the relevant contexts

The guarantee describes the output the specified component is
obligated to produce as long as the context behaves in accordance
with the assumption

INF 5150 2006 / / Foil 12 Ketil StølenØystein Haugen

Graphical illustration of the A-G paradigm

Context System

specifies

A-G specification

input

output

assumption guarantee

NOTE: The A-G
paradigm does not
specify the context –
only the context’s
interaction with the
system in question

INF 5150 2006 / / Foil 13 Ketil StølenØystein Haugen

Guarantee with respect to
the state at the moment of
termination

Pre-post specifications

Pre-post specifications are based on the assumption-guarantee paradigm

Integer division

var dividend, divisor, quotient, rest : Nat

pre divisor

post (dividend = (quotient’ * divisor) + rest’) &

rest’ < divisor

≠ 0
Assumption about the state at the
moment the execution is initiated

INF 5150 2006 / / Foil 14 Ketil StølenØystein Haugen

Semantics for pre-post specification

pre false at
initiaton

pre true at
initiation

everything
allowed

post false at the
moment of
termination

post true at the
moment of
termination

legal
behavior

illegal
behavior

Legal,
arbitrary
behavior

INF 5150 2006 / / Foil 15 Ketil StølenØystein Haugen

A state is a function from the set of variable names to type correct values
– e.g.,

state(dividend)=600
state(divisor)=6
state(quotient)=100

A state S satisfies a pre-condition if the condition evaluates to true when for any
variable v

– S(v) is substituted for each occurrence of v in the condition
A pair of states (S,S’) satisfies a post-condition if the condition evaluates to true
when for any variable v

– S(v) is substituted for each occurrence of v in the condition
– S’(v) is substituted for each occurrence of v’ in the condition

The semantics of a pre-post specification is the set of all pairs of states (S,S’)
such that

– S satisfies pre and (S,S’) satisfies post, or
– S does not satisfy pre
– In other words: pre(S) => post(S,S’)

We use [SPEC] to denote the semantics of the pre-post specification SPEC

Semantics for pre-post specifications

INF 5150 2006 / / Foil 16 Ketil StølenØystein Haugen

pre false at
initiation

pre true at
initiation

everything

allowed

post true at the moment
of termination

post false at the
moment of termination

SPEC2

SPEC1

Property refinement for pre-post specifications

Weaken assumption
Strengthen guarantee

SPEC2 is a property refinement of SPEK1
if [SPEC2] is contained in [SPEC1]

This corresponds to logical implication

INF 5150 2006 / / Foil 17 Ketil StølenØystein Haugen

Weakening the pre-condition (assumption)

Integer division

var dividend, divisor, quotient, rest : Nat

pre true

post

if divisor 0 then

(dividend = (quotient’ * divisor) + rest’) & rest’ < divisor

else quotient’ = 0

≠

INF 5150 2006 / / Foil 18 Ketil StølenØystein Haugen

Strengthening the post-condition (guarantee)

Integer division

var dividend, divisor, quotient, rest : Nat

pre divisor

post (dividend = (quotient’ * divisor) + rest’) &

rest’ < divisor & dividend’ = dividend &

divisor’ = divisor

≠ 0

INF 5150 2006 / / Foil 19 Ketil StølenØystein Haugen

Pre-condition describes only what the context may do before the
operation is started up – not what the context may do during the
execution of the operation

– pre { divisor 0 }
– <quotient := 0>
– while <dividend > divisor> do

– <dividend := dividend - divisor>
– <quotient := quotient + 1>

– od
– <rest:=dividend>
– post { (dividend’ = (quotient * divisor’) + rest) & rest < divisor’ }

“<Statement>” denotes that “statement” is atomic (in the meaning
that the context cannot interfere with its execution)

The shortcomings of pre-post specifications

≠
Points of

interference

INF 5150 2006 / / Foil 20 Ketil StølenØystein Haugen

<e1, e2, e3, e4, e4, e1, e2, e5, ……………>

Traces

Traces are used to represent system runs matematically
In the literature there are many different kinds of traces
INF 5150 traces are sequences of events

Events are instantaneous
The number of events in a trace may be finite

– may be caused by: termination, deadlock, infinite waiting, system crash

The number of events in a trace may be infinite
– May be cause by: nontermination, livelock, nontermination by purpose

INF 5150 2006 / / Foil 21 Ketil StølenØystein Haugen

Traces with time ticks

Events and time ticks are instantaneous
Each trace contains infinitely time ticks

– this reflects that time never halts

The number of events in a trace may be finite

<e1, e2, e3, tick, tick, e4, e4, e1, tick, tick, tick, e2, tick, e5, tick, ……………>

1.
 t

im
e

un
it

2.
 t

im
e

un
it

4.
 t

im
e

un
it

3.
ti

m
e

un
it

7.
 t

im
e

un
it

6.
 t

im
e

un
it

5.
 t

im
e

un
it

Traces are infinite sequences of events and time ticks

INF 5150 2006 / / Foil 22 Ketil StølenØystein Haugen

<e1:t1, e2:t2, e3:t3, e4:t4, e4:t5, e1:t6, e2:t7, e5:t8, ……………>

Traces with time stamps

Each element of the trace is a pair of an event and a time stamp

The elements are ordered according to their time stamps
– (t1<=t2<=t3 ….)

Events are instantaneous
A trace is either finite or there is for every point in time k an
element n:t with time stamp t such that k< t

– this is necessary to avoid Zenon’s paradox

INF 5150 2006 / / Foil 23 Ketil StølenØystein Haugen

!eventtransmission
tag

message

?eventreception
tag

message

Traces for sequence diagrams

Two kinds of events:
– transmission events
– reception events

INF 5150 2006 / / Foil 24 Ketil StølenØystein Haugen

Sequence diagram

sd S
L1 L2

x

transmission
event

!x

message

lifeline component

reception
event

?x

INF 5150 2006 / / Foil 25 Ketil StølenØystein Haugen

Causality and weak sequencing

Causality:
– a message can never be received before it has been transmitted
– the transmission event for a message is therefore always ordered before

the reception event for the same message

Weak sequencing:
– events from the same lifeline are ordered in the trace in the same order

as on the lifeline

NOTE: A sequence diagram will normally be represented by more
than one trace, and in some cases by infinitely many traces

INF 5150 2006 / / Foil 26 Ketil StølenØystein Haugen

Weak sequencing

sd W
L1 L2

x

y

<!x,?x,!y,?y>
<!x,!y,?x,?y>

INF 5150 2006 / / Foil 27 Ketil StølenØystein Haugen

A B C
a
b

c
d

<!a, ?a, !b, ?b, !c, ?c, !d, ?d>
<!a, ?a, !b, ?b, !c, !d, ?c, ?d>
<!a, ?a, !b, ?b, !d, !c, ?c, ?d>
<!a, ?a, !b, !c, ?b, ?c, !d, ?d>
<!a, ?a, !b, !c, ?b, !d, ?c, ?d>
<!a, ?a, !b, !c, ?c, ?b, !d, ?d>

There are six possible traces if time information is ignored:

sd Ex

Each of these corresponds to infinitely many traces with time information

Example

INF 5150 2006 / / Foil 28 Ketil StølenØystein Haugen

External behavior

Property refinement in the classical sense takes only external
behavior into consideration
We therefore need a well-defined interface between

– the component to be refined, and
– its context

INF 5150 2006 / / Foil 29 Ketil StølenØystein Haugen

A B C
a
b

c
d

sd Ex

<?a, !b, !c>

System has one possible external trace:

This trace is an abstraction of infinitely many traces with time information

system contextcontext

Projection on B

INF 5150 2006 / / Foil 30 Ketil StølenØystein Haugen

– STAIRS –
Steps to Analyze Sequence Diagrams

with Refinement Semantics

INF 5150 2006 / / Foil 31 Ketil StølenØystein Haugen

Motivation

Make use of classical refinement theory in a practical UML setting
– From theory to practice, and not the other way around

We aim to explain how classical theory of refinement can be used
to refine specifications expressed with the help
Sequence diagrams can be used to explain other kinds of UML
diagrams
By defining refinement for sequence diagrams we implicitly define
refinement for the UML as a whole

INF 5150 2006 / / Foil 32 Ketil StølenØystein Haugen

Requirements to STAIRS

Should support specification of potential behavior
– Means to abstraction

Should support specification of mandatory behavior
– Important within the security domain

Should support specification of negative behavior in addition to
positive behavior
Should support classical refinement theory
Should formalize incremental system development
Should facilitate modular analysis, verification and testing

INF 5150 2006 / / Foil 33 Ketil StølenØystein Haugen

Next lecture on refinement – September 29

Example based introduction to STAIRS
Semantics of sequence diagrams
Refinement in STAIRS
– Supplementing
– Narrowing
– Detailing

Relation to pre-post

