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Refinement – basic concepts and ideas

September 22, 2006
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Objectives for the lectures on refinement

The two lectures on refinement aim to
– to motivate and explain a basic apparatus to define and relate the 

notions of refinement  
this includes

– representing executions by traces
– explaining the significance of a notion of observation
– outlining the assumption-guarantee paradigm

– introduce and related the following notions of refinement
supplementing
narrowing
detailing
property refinement
interface refinement

– Illustrate the use of these notions of refinement
the interplay between specification and refinement
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The role of refinement

System development makes use of refinement as a means to check 
and document incremental steps aiming to

– reduce the set of legal implementations
– introduce error handling
– introduce time constraints
– introduce finer granularity of interaction and execution
– introduce implementation dependent data types
– introduce implementation oriented communication protocols
– introduce constraints on unlimited resources
– extend the input domain 
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system

Why refinement is important

Systems of today are large and complex – abstraction is a 
necessary means to

– explain what the systems do
– explain how the systems are built 
– distinguish the essentials from the inessential
– decompose large and complicated aspects into small more easily 

understandable entities
– extract specialized system views

Formal documentation gives new possibilities

Refinement  
– relates system descriptions at different levels of abstraction
– connects and relates different system views
– provides a foundation for verifications and validations 



INF 5150 2006 /  / Foil 5 Ketil StølenØystein Haugen

enterprise computation engineering technologyinformation

Design specification decomposed into views

implementation

Requirements
specification

User
documentation

Why refinement must be documented
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Documenting refinement

Precision is just as important when we document refinements as 
when we write specifications
Refinements can be documented using standard specification 
languages

– in INF 5150 we will use UML for this purpose

Formal documentation of refinements facilitates integrated 
analysis, validation, testing and verification
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Three main concepts of language theory

Syntax
– The relationship between symbols or groups of symbols independent of 

content, usage and interpretation

Semantics
– The rules and conventions that are necessary to interpret and 

understand the content of language constructs 

Pragmatics
– The study of the relationship between symbols or groups of symbols 

and their interpretation and usage
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Set of syntactically correct 
expressions in the 
language to be explained

Set of syntactically 
correct expressions in a 
language that is well-
understood

Semantic relation

Relates 
expressions 

that need 
interpretation 
to expressions 
that are well-
understood

What does it 
mean that a 
language is well-
understood?

Semantic relation 
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For a specification language these  
are defined with respect to a 
notion of observation

Of the same meaning

The need for a notion of observation

A semantic relation will define an equivalence relation on the 
language that should be understood 
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May our notion of observation be 
implemented by a human being?

Definition of a notion of observation

May observe only external 
behavior
May observe any potential 
behavior
May observe time with respect 
to a global clock
May observe safety properties

– Always falsified by a partial 
execution

May observe liveness
– Falsified only by complete 

executions 
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Assumption-guarantee paradigm

Well-known specification technique to facilitate modularity
– appeared first with pre-post specifications in the 60ies
– since then taken further and adapted in many directions
– referred to as: pre-post, rely-guarantee, assumption-commitment, 

assumption-guarantee, contracts, goal-means-task 

Motivation:
– The behavior of a system component depends on the context it is 

executed in
– Not all contexts are equally interesting

The assumption describes expected input
– The input that can be produced by the relevant contexts

The guarantee describes the output the specified component is 
obligated to produce as long as the context behaves in accordance 
with the assumption
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Graphical illustration of the A-G paradigm

Context System

specifies

A-G specification

input

output

assumption guarantee

NOTE: The A-G 
paradigm does not 
specify the context  –
only the context’s 
interaction with the 
system in question



INF 5150 2006 /  / Foil 13 Ketil StølenØystein Haugen

Guarantee with respect to 
the state at the moment of
termination 

Pre-post specifications

Pre-post specifications are based on the assumption-guarantee paradigm

Integer division

var dividend, divisor, quotient, rest : Nat  

pre divisor

post ( dividend = (quotient’ * divisor) + rest’ ) &

rest’ < divisor 

≠ 0
Assumption about the state at the 
moment the execution is initiated
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Semantics for pre-post specification

pre  false at 
initiaton

pre true at 
initiation

everything 
allowed  

post false at the 
moment of 
termination

post true at the 
moment of 
termination

legal 
behavior

illegal 
behavior

Legal, 
arbitrary 
behavior
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A state is a function from the set of variable names to type correct values 
– e.g., 

state(dividend)=600
state(divisor)=6
state(quotient)=100

A state S satisfies a pre-condition if the condition evaluates to true when for any 
variable v

– S(v) is substituted for each occurrence of v in the condition 
A pair of states (S,S’) satisfies a post-condition if the condition evaluates to true 
when for any variable v

– S(v) is substituted for each occurrence of v in the condition
– S’(v) is substituted for each occurrence of v’ in the condition

The semantics of a pre-post specification is the set of all pairs of states (S,S’) 
such that

– S satisfies pre and (S,S’) satisfies post, or
– S does not satisfy pre
– In other words: pre(S) => post(S,S’)

We use [SPEC] to denote the semantics of the pre-post specification SPEC

Semantics for pre-post specifications
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pre false at  
initiation 

pre true at 
initiation

everything

allowed   

post true at the moment 
of termination

post false at the 
moment of termination

SPEC2

SPEC1

Property refinement for pre-post specifications

Weaken assumption
Strengthen guarantee

SPEC2 is a property refinement of SPEK1 
if [SPEC2] is contained in [SPEC1] 

This corresponds to logical implication



INF 5150 2006 /  / Foil 17 Ketil StølenØystein Haugen

Weakening the pre-condition (assumption)

Integer division

var dividend, divisor, quotient, rest : Nat  

pre   true

post

if divisor      0 then

( dividend = (quotient’ * divisor) + rest’ ) & rest’ < divisor 

else quotient’ = 0

≠
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Strengthening the post-condition (guarantee)

Integer division

var dividend, divisor, quotient, rest : Nat  

pre divisor

post ( dividend = (quotient’ * divisor) + rest’ ) &

rest’ < divisor & dividend’ = dividend &

divisor’ = divisor

≠ 0
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Pre-condition describes only what the context may do before the 
operation is started up – not what the context may do during the 
execution of the operation 

– pre  { divisor    0 }
– <quotient := 0>
– while <dividend > divisor> do

– <dividend := dividend - divisor>
– <quotient := quotient + 1>

– od
– <rest:=dividend>
– post  { ( dividend’ = (quotient * divisor’) + rest ) & rest < divisor’ }

“<Statement>” denotes that “statement” is atomic (in the meaning 
that the context cannot interfere with its execution) 

The shortcomings of pre-post specifications

≠
Points of 

interference
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<e1, e2, e3, e4, e4, e1, e2, e5, ……………>

Traces

Traces are used to represent system runs matematically
In the literature there are many different kinds of traces
INF 5150 traces are sequences of events

Events are instantaneous
The number of events in a trace may be finite 

– may be caused by: termination, deadlock, infinite waiting, system crash

The number of events in a trace may be infinite
– May be cause by: nontermination, livelock, nontermination by purpose
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Traces with time ticks

Events and time ticks are instantaneous
Each trace contains infinitely time ticks 

– this reflects that time never halts

The number of events in a trace may be finite

<e1, e2, e3, tick, tick, e4, e4, e1, tick, tick, tick, e2, tick, e5, tick, ……………>
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Traces are infinite sequences of events and time ticks
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<e1:t1, e2:t2, e3:t3, e4:t4, e4:t5, e1:t6, e2:t7, e5:t8, ……………>

Traces with time stamps

Each element of the trace is a pair of an event and a time stamp

The elements are ordered according to their time stamps 
– (t1<=t2<=t3 ….)

Events are instantaneous
A trace is either finite or there is for every point in time k an 
element n:t with time stamp t such that k< t

– this is necessary to avoid Zenon’s paradox
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!eventtransmission
tag

message

?eventreception 
tag

message

Traces for sequence diagrams

Two kinds of events: 
– transmission events
– reception events
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Sequence diagram

sd S
L1 L2

x

transmission
event

!x

message

lifeline component

reception 
event

?x
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Causality and weak sequencing

Causality: 
– a message can never be received before it has been transmitted
– the transmission event for a message is therefore always ordered before 

the reception event for the same message

Weak sequencing:
– events from the same lifeline are ordered in the trace in the same order 

as on the lifeline 

NOTE: A sequence diagram will normally be represented by more 
than one trace, and in some cases by infinitely many traces
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Weak sequencing

sd W
L1 L2

x

y

<!x,?x,!y,?y>
<!x,!y,?x,?y>
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A B C
a
b

c
d

<!a, ?a, !b, ?b, !c, ?c, !d, ?d> 
<!a, ?a, !b, ?b, !c, !d, ?c, ?d> 
<!a, ?a, !b, ?b, !d, !c, ?c, ?d> 
<!a, ?a, !b, !c, ?b, ?c, !d, ?d> 
<!a, ?a, !b, !c, ?b, !d, ?c, ?d> 
<!a, ?a, !b, !c, ?c, ?b, !d, ?d>

There are six possible traces if time information is ignored:

sd Ex

Each of these corresponds to infinitely many traces with time information

Example
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External behavior

Property refinement in the classical sense takes only external 
behavior into consideration
We therefore need a well-defined interface between 

– the component to be refined, and 
– its context
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A B C
a
b

c
d

sd Ex

<?a, !b, !c>

System has one possible external trace:

This trace is an abstraction of infinitely many traces with time information

system contextcontext

Projection on B
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– STAIRS –
Steps to Analyze Sequence Diagrams 

with Refinement Semantics
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Motivation

Make use of classical refinement theory in a practical UML setting
– From theory to practice, and not the other way around

We aim to explain how classical theory of refinement can be used
to refine specifications expressed with the help   
Sequence diagrams can be used to explain other kinds of UML 
diagrams 
By defining refinement for sequence diagrams we implicitly define 
refinement for the UML as a whole
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Requirements to STAIRS

Should support specification of potential behavior
– Means to abstraction

Should support specification of mandatory behavior
– Important within the security domain

Should support specification of negative behavior in addition to
positive behavior
Should support classical refinement theory
Should formalize incremental system development
Should facilitate modular analysis, verification and testing
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Next lecture on refinement – September 29

Example based introduction to STAIRS
Semantics of sequence diagrams
Refinement in STAIRS
– Supplementing
– Narrowing
– Detailing

Relation to pre-post


