Refinement — basic concepts and ideas

September 22, 2006

INF 5150 2006 / / Foil 1 @ystein Haugen Ketil Stalen

Objectives for the lectures on refinement

® The two lectures on refinement aim to

— to motivate and explain a basic apparatus to define and relate the
notions of refinement

®this includes
— representing executions by traces
— explaining the significance of a notion of observation
— outlining the assumption-guarantee paradigm
— introduce and related the following notions of refinement
® supplementing
®narrowing
@ detailing
® property refinement
®interface refinement
— lllustrate the use of these notions of refinement
®the interplay between specification and refinement

INF 5150 2006 / / Foil 2 @ystein Haugen Ketil Stalen

The role of refinement

® System development makes use of refinement as a means to check
and document incremental steps aiming to

— reduce the set of legal implementations

— introduce error handling

— introduce time constraints

— introduce finer granularity of interaction and execution

— introduce implementation dependent data types

— introduce implementation oriented communication protocols
— introduce constraints on unlimited resources

— extend the input domain

INF 5150 2006 / / Foil 3 @ystein Haugen Ketil Stalen

Why refinement is important

® Systems of today are large and complex — abstraction is a
necessary means to
— explain what the systems do
— explain how the systems are built
— distinguish the essentials from the inessential

— decompose large and complicated aspects into small more easily
understandable entities

— extract specialized system views

® Formal documentation gives new possibilities

® Refinement
— relates system descriptions at different levels of abstraction
— connects and relates different system views
— provides a foundation for verifications and validations

INF 5150 2006 / / Foil 4 @ystein Haugen Ketil Stalen

Why refinement must be documented

User

Requirements documentation
specification

Design specification decomposed into views
! ¥ ! 7 !
enterprise | information | computation | engineering | technology

implementation

INF 5150 2006 / / Foil 5 @ystein Haugen Ketil Stalen

Documenting refinement

® Precision is just as important when we document refinements as
when we write specifications
® Refinements can be documented using standard specification
languages
— in INF 5150 we will use UML for this purpose

® Formal documentation of refinements facilitates integrated
analysis, validation, testing and verification

INF 5150 2006 / / Foil 6 @ystein Haugen Ketil Stalen

Three main concepts of language theory

® Syntax

— The relationship between symbols or groups of symbols independent of
content, usage and interpretation

® Semantics

— The rules and conventions that are necessary to interpret and
understand the content of language constructs

® Pragmatics

— The study of the relationship between symbols or groups of symbols
and their interpretation and usage

INF 5150 2006 / / Foil 7 @ystein Haugen Ketil Stalen

Semantic relation

Set of syntacticaly
correct expressionsin a
language that is well-
understood

Set of syntactically correct
expressionsin the
language to be explained

What doesit
mean that a
language is well-
under stood?

Semantic relation

Relates
expressions
that need
interpretation
to expressions
that are well-
understood

INF 5150 2006 / / Foil 8 @ystein Haugen Ketil Stalen

The need for a notion of observation

® A semantic relation will define an equivalence relation on the
language that should be understood

Of the same meaning
7]

For a specification language these
are defined with respect to a
notion of observation

INF 5150 2006 / / Foil 9 @ystein Haugen Ketil Stalen

i Definition of a notion of observation

® May observe only external
behavior

® May observe any potential
behavior

® May observe time with respect
to a global clock

® May observe safety properties

— Always falsified by a partial
execution

® May observe liveness

— Falsified only by complete
executions

W7

]

May our notion of observation be
implemented by a human being?

INF 5150 2006 / / Foil 10 @ystein Haugen Ketil Stalen

Assumption-guarantee paradigm

® Well-known specification technique to facilitate modularity
— appeared first with pre-post specifications in the 60ies
— since then taken further and adapted in many directions
— referred to as: pre-post, rely-guarantee, assumption-commitment,
assumption-guarantee, contracts, goal-means-task
® Motivation:
— The behavior of a system component depends on the context it is
executed in
— Not all contexts are equally interesting
® The assumption describes expected input
— Theinput that can be produced by the relevant contexts
® The guarantee describes the output the specified component is
obligated to produce as long as the context behaves in accordance
with the assumption

INF 5150 2006 / / Foil 11 @ystein Haugen Ketil Stalen

Graphical illustration of the A-G paradigm

NOTE: The A-G (" A-Gspedification)
paradigm does not _
specify the context — assumption guarantee

only the context’s
interaction with the
system in question

specifies

input

Context System

output _

INF 5150 2006 / / Foil 12 @ystein Haugen Ketil Stalen

Q/ Pre-post specifications

Pre-post specifications are based on the assumption-guarantee paradigm

= Integer division

var dividend, divisor, quotient, rest : Nat

re divisor % 0 Assumption about the stete at the
P 7 moment the execution isinitiated

post (dividend = (quotient’ * divisor) + rest’ & |Guarantee with respect t
the state at the moment o
termination

rest’ < divisor

INF 5150 2006 / / Foil 13 @ystein Haugen Ketil Stglen

Q/ Semantics for pre-post specification

Legal,
arbitrary
behavior

INF 5150 2006 / / Foil 14 @ystein Haugen Ketil Stalen

Semantics for pre-post specifications

® A state is a function from the set of variable names to type correct values
- eg,
® state(dividend)=600
® state(divisor)=6
® state(quotient)=100
® A state S satisfies a pre-condition if the condition evaluates to true when for any
variable v
— S(v) is substituted for each occurrence of v in the condition

® A pair of states (S,S’) satisfies a post-condition if the condition evaluates to true
when for any variable v

— S(v) is substituted for each occurrence of v in the condition
— S’(v) is substituted for each occurrence of v’ in the condition

® The semantics of a pre-post specification is the set of all pairs of states (S,S’)
such that

— S satisfies pre and (S,S’) satisfies post, or
— S does not satisfy pre
— In other words: pre(S) => post(S,S’)
® We use [SPEC] to denote the semantics of the pre-post specification SPEC

INF 5150 2006 / / Foil 15 @ystein Haugen Ketil Stglen

Property refinement for pre-post specifications

i Strengthen guarantee
Weaken assumption

SPEC2 isa property refinement of SPEK 1
if [SPEC2] iscontained in [SPEC1]
This corresponds to logical implication

INF 5150 2006 / / Foil 16 @ystein Haugen Ketil Stalen

Weakening the pre-condition (assumption)

= Integer division

var dividend, divisor, quotient, rest : Nat

pre true

post
if divisor # 0 then
(dividend = (quotient’ * divisor) + rest’) & rest’ < divisor

else quotient’ =0

INF 5150 2006 / / Foil 17 @ystein Haugen Ketil Stalen

Strengthening the post-condition (guarantee)

— Integer division

var dividend, divisor, quotient, rest : Nat

pre divisor # 0

post (dividend = (quotient’ * divisor) + rest’) &
rest’ < divisor & dividend' = dividend &

divisor’ = divisor

INF 5150 2006 / / Foil 18 @ystein Haugen Ketil Stalen

The shortcomings of pre-post specifications

® Pre-condition describes only what the context may do before the
operation is started up — not what the context may do during the
execution of the operation

pre {divisor#0}

<guotient := 0>

while <dividend > divisor> do Points of
— <dividend :=dividend - divisor> interference
— <quotient := quotient + 1>

- od
<rest:=dividend>
post { (dividend’ = (quotient * divisor’) + rest) & rest < divisor’ }

® “<Statement>" denotes that “statement” is atomic (in the meaning
that the context cannot interfere with its execution)

INF 5150 2006 / / Foil 19 @ystein Haugen Ketil Stalen

Traces

® Traces are used to represent system runs matematically
@ In the literature there are many different kinds of traces
® INF 5150 traces are sequences of events

<el,e2,e3,ed,ed, el, e2,e5, >

® Events are instantaneous
® The number of events in a trace may be finite

— may be caused by: termination, deadlock, infinite waiting, system crash
® The number of events in a trace may be infinite

— May be cause by: nontermination, livelock, nontermination by purpose

INF 5150 2006 / / Foil 20 @ystein Haugen Ketil Stalen

Traces with time ticks

® Traces are infinite sequences of events and time ticks

<el, e2, €3, tick, tick, e4, e4, €1, tick, tick, tick, €2, tick, €5, tick,

L L

1. timeunit
2. time unit
3.time unit
4. time unit
5. timeunit
6. time unit
7. time unit

® Events and time ticks are instantaneous

® Each trace contains infinitely time ticks
— this reflects that time never halts
® The number of events in a trace may be finite

INF 5150 2006 / / Foil 21 @ystein Haugen Ketil Stalen

Traces with time stamps

® Each element of the trace is a pair of an event and a time stamp

<el:tl, e2:t2, e3:t3, ed:t4, e4d:t5, el:t6, e2:t7, e5:8, >

® The elements are ordered according to their time stamps
— (t1<=t2<=t3....)
® Events are instantaneous

® A trace is either finite or there is for every point in time k an
element n:t with time stamp t such that k<t
— this is necessary to avoid Zenon’s paradox

INF 5150 2006 / / Foil 22 @ystein Haugen Ketil Stalen

Traces for sequence diagrams

® Two kinds of events:
— transmission events
— reception events

transtml Ssio levent reception pevent
= = :tag : —
1= message
INF 5150 2006 / / Foil 23 @ystein Haugen Ketil Stalen
Sequence diagram
message
N
sd S
L1 L2
[
I X I
I I
[|
| AN
transmission reception
event event
IX ?X

INF 5150 2006 / / Foil 24 @ystein Haugen Ketil Stalen

Causality and weak sequencing

® Causality:
— amessage can never be received before it has been transmitted

— the transmission event for a message is therefore always ordered before
the reception event for the same message

® \Weak sequencing:

— events from the same lifeline are ordered in the trace in the same order
as on the lifeline

® NOTE: A sequence diagram will normally be represented by more
than one trace, and in some cases by infinitely many traces

INF 5150 2006 / / Foil 25 @ystein Haugen Ketil Stalen

Weak sequencing

sd W /

A

<IX,?X,ly,?y>
<IX,ly,?x,?y>

INF 5150 2006 / / Foil 26 @ystein Haugen Ketil Stalen

Example

M@ & =

There are six possible traces if time information is ignored:

<la ?a,'b, ?b, !¢, 2c, 'd, 2d>
<la ?a b, 7, !c, Id, ?c, 2d>
<la ?a b, ?b, 'd, !c, 7c, 2d>
<lg, ?a, b, Ic, ?b, 7c, !d, 2d>
<la ?a !b, 'c, b, !d, ?c, 2d>
<lag, ?a,'b, 'c, 7c, ?b, 'd, 2d>

Each of these corresponds to infinitely many traces with time information

INF 5150 2006 / / Foil 27 @ystein Haugen Ketil Stalen

External behavior

® Property refinement in the classical sense takes only external
behavior into consideration

® \We therefore need a well-defined interface between
— the component to be refined, and
— its context

INF 5150 2006 / / Foil 28 @ystein Haugen Ketil Stalen

Projection on B

context system context
A B C
a : :
: : C
d 3

System has one possible external trace:

<?a, b, Ic>

Thistrace is an abstraction of infinitely many traces with time information

INF 5150 2006 / / Foil 29 @ystein Haugen Ketil Stalen

— STAIRS -
Steps to Analyze Sequence Diagrams
with Refinement Semantics

INF 5150 2006 / / Foil 30 @ystein Haugen Ketil Stalen

Motivation

® Make use of classical refinement theory in a practical UML setting
— From theory to practice, and not the other way around

® We aim to explain how classical theory of refinement can be used
to refine specifications expressed with the help

® Sequence diagrams can be used to explain other kinds of UML
diagrams

® By defining refinement for sequence diagrams we implicitly define
refinement for the UML as a whole

INF 5150 2006 / / Foil 31 @ystein Haugen Ketil Stalen

1 Requirements to STAIRS

® Should support specification of potential behavior
— Means to abstraction

® Should support specification of mandatory behavior
— Important within the security domain

® Should support specification of negative behavior in addition to
positive behavior

® Should support classical refinement theory
® Should formalize incremental system development
® Should facilitate modular analysis, verification and testing

INF 5150 2006 / / Foil 32 @ystein Haugen Ketil Stalen

Next lecture on refinement — September 29

® Example based introduction to STAIRS
® Semantics of sequence diagrams
® Refinement in STAIRS
— Supplementing
— Narrowing
— Detailing
® Relation to pre-post

INF 5150 2006 / / Foil 33 @ystein Haugen Ketil Stalen

