" UNIVERSITY

5 OF OSLO

The pragmatics of STAIRS

Paper by Ragnhild Kobro Runde, @ystein
Haugen and Ketil Stglen

Version 061027

27-Oct-06 INF5150 INFUIT Haugen / Stglen

0STS dNI

“ UNIVERSITY
; OF OSLO

Today’s topics

» Explain the practical relevance of STAIRS

= Give guidelines on
— the use of STAIRS operators
— refinement

= |llustrated by a running example
* Present some new operators and refinement types
= Some repetition

» The paper can be found on the syllabus/achievement
page for INF5150

W

=0
27-Oct-06 INF5150 INFUIT Haugen / Stalen

0STS dNI

. UNIVERSITY
.~ OF 0SLO

Weak sequencing of trace sets (1)

» 5,25, denotes the set of all traces that may be
constructed by selecting one trace t; from s, and one
trace t, from s, and combining them in such a way that for
each lifeline, the events from t;, comes before the events
from t,.

* Note: if s; or s, is empty then s, Zs, is also empty

0STS dNI

= Remember: if the message hello is sent from I, to |,, then
the event !hello occurs on |, and ?hello occurs on |,

27-Oct-06 INF5150 INFUIT Haugen / Stglen

47 UNIVERSITY
; OF OSLO

Alice Bob

Red events occur on Alice,
blue events on Bob

hello

goodbye

I
|
|
=1
|
|
|
|
|

S1 S,

<i(h,A,B),2(h,A,B)>) > (<I(g,AB)2(g.AB)>

Z
S
g1
[ty
a1
o

S, R S, is the set of
positive traces for the
diagram

<!(h,A,B),?(h,A,B),!(9,A,B),?(9,A,B)>
<!(h,A,B),!(g,A,B),?(h,A,B),?(g,A,B)>

W

%;‘ :
=
27-Oct-06 INF5150 INFUIT Haugen / Stglen 4

G

" UNIVERSITY

5 OF OSLO

Weak sequencing of interaction obligations

= (PLN)Z(P2N) & (P12P,, (N1ZP)U (N 2N,)U(P;2N,))

= Traces composed exclusively by positive traces become
positive

» Traces composed with at least one negative trace
become negative

gl

27-Oct-06 INF5150 INFUIT Haugen / Stglen

0STS dNI

X

“ UNIVERSITY
; OF OSLO

Formal semantics of seq

= [[d; seq d,]] £ {o,Z0,| 0,€[[d,]]A0,€[[d,]T}

= seq is the implicit composition operator
= 0, is shorthand for (p;, n;)

= Note: For better readability we give the binary versions of
the operators in this presentation. N-ary versions are
used in the paper.

W

*
=0
27-Oct-06 INF5150 INFUIT Haugen / Stalen

Z
S
g1
[ty
a1
o

. UNIVERSITY
.~ OF 0SLO

The pragmatics of creating interactions

-

pads

27-Oct-06 INF5150 INFUIT Haugen / Stglen

0STS dNI

“ UNIVERSITY
; OF OSLO

Example: an appointment system

= A system for booking appointments used by e.g. dentists

= Functionality:
— MakeAppointment: The client may ask for an appointment
— CancelAppointment: The client may cancel an appointment

— Payment: The system may send an invoice message asking the
client to pay for the previous or an unused appointment.

= The interactions specifying the system will be developed
in a stepwise manner

= Steps will be shown to be valid refinement steps

W

X

*
=0
27-Oct-06 INF5150 INFUIT Haugen / Stalen

0STS dNI

. UNIVERSITY
.~ OF 0SLO

xalt vs alt (1): CancelAppointment

sd CancelAppointment

= This specification has two
positive traces [ciem

= Whether reception of
appointmentCancelled()

cancel(appointment)

weak sequencing

27-Oct-06 INF5150 INFUIT Haugen / Stglen

‘AppSystem

occurs before or after appointmentCancelled()
Sendl_ng Of . appointmentSuggestion{time)
appointmentSuggestion(...) r !
is not important vesO

» Underspecification due to | appointmentlade()

0STS dNI

“ UNIVERSITY
; OF OSLO

xalt vs alt (2): MakeAppointment

= May ask for either a sd MakeAppoiniment
specific date or a specific
hour of the day (e.g. in the
lunch break)

» The system is not _ :
required to offer both needApp(hour)
alternatives ' -

» Underspecification =2
expressed by the alt
operator

alt needApp(date)

DecideAppTime

W

Lk
=0
27-Oct-06 INF5150 INFUIT Haugen / Stalen

:Client ‘AppSystem

10

Z
M
g1
[ty
a1
o

. UNIVERSITY
° OF 0SLO

xalt vs alt (3): DecideAppTime

» The system must be able d DecideAppTime
to handle both yes() and

:Client . . ‘AppSystem
no() as reply messages J _ _
fl’0m the Cl|ent appointmentSuggestion(time)
» This is not o — =
underspecification ——rw————y E
= Therefore the alternatives o0 S
are expressed by the xalt noAppointment()
operator
g‘?
it 27-Oct-06 INF5150 INFUIT Haugen / Stglen 11
5% UNIVERSITY
"\.h‘” s OF OSLO
xalt vs alt (4): CancelAppointment (revised)
. sd CancelAppointment
= The condition for _ _
choosing errorMessage() Client AppSystem
or cancel(appointment)
appointmentCancelled() is _ =
not Shown xalt] errorMessage() E
- BOth a|tema'[ives ShOUId . appointmentCancelled() 8
be possible »
» The choice is made by the DecideAppTime
system '

X

W

*
=0
27-Oct-06 INF5150 INFUIT Haugen / Stalen

12

. UNIVERSITY
.~ OF 0SLO

xalt vs alt (5)

= A third use of xalt: to specify inherent nondeterminism
— for example when specifying a coin toss

» The crucial question when specifying alternatives: Do
these alternatives represent similar traces in the sense
that implementing only one is sufficient?

— if yes, use alt
— otherwise, use xalt

0STS dNI

27-Oct-06 INF5150 INFUIT Haugen / Stglen 13

“ UNIVERSITY
; OF OSLO

Formal semantics of alt and xalt

= [[d, alt d,]] £ {o,wo, | 0,€[[d,]IA0,€[[d,]]}, where
" (Puny) W (P2Ny) £ (P,UP,, NLUN,)

" [[d; xalt d,]] = [[d,]] U [[d]

Z
S
g1
[ty
a1
o

W

=
27-Oct-06 INF5150 INFUIT Haugen / Stglen 14

% UNIVERSITY
0 © or osLO

Informal illustration of MakeAppointment

sd MakeAppontment

nedApesddate) needApphour) Client AppSystem

T T

alt needdigp(date)

needApp(hour)
appSuggltime)-yes-apphlade spSuggltme)-ne-noAgn

e Q@D ——
ref

= DecideAppTime

needAppidate)
PwedAppihoa)

0STS dNI

renrythng otse
sd DecideAppTime
seq
(Chent AppSystem
appSugg(ime)-yes-apphlade appSuggitime)-no-nafpp

everything eise everyihing else appointmentSuggestion(time)

= xalt yes()
appointmentMade()

) no-noApp nef)

werytung olse
S RoAppoIntmEnt()

e

%‘ ¥ 27-Oct-06 INF5150 INFUIT Haugen / Stglen 15

3% UNIVERSITY
i OF OSLO

The pragmatics of alt vs xalt

= Use alt to specify alternatives that represent similar
traces, i.e. to model
— underspecification

» Use xalt to specify alternatives that must all be present in
an implementation, i.e. to model
— inherent nondeterminism, as in the specification of a coin toss

— alternative traces due to different inputs that the system must be
able to handle (as in DecideAppTime)

— alternative traces where the conditions for these being positive
are abstracted away (as in the revised version of
CancelAppointment on slide 12)

0STS dNI

‘q‘b»(

I

=

§ ¥ 27-Oct-06 INF5150 INFUIT Haugen / Stalen 16

@ UNIVERSITY
0F - orosLo
!’J

Guards (1)

» Guards may be used to sd CancelAppointment
express conditions for . _
choosing between Client AppSystem
alternatives ' i

cancel(appointment)

= Here: an error message is |] _
sent if the client tries to al
cancel an appointment L erorifesseged
less than 24 hours before

. appointmentCancelled()
it is due

z
m
a1
[y
a1
o

ref
DecideAppTime

27-Oct-06 INF5150 INFUIT Haugen / Stglen 17

<44 UNIVERSITY
“¥F; orosLo
ey

Guards (2)

= Semantically, a guard is represented by a special check-
event

» The check-event ensures that for each operand to alt/xalt,
its traces (including the check-event) become negative if
the guard is false
— otherwise they remain postive or negative as before

» Therefore the guard must be true in all possible situations
in which the specified traces are positive

= An alt/xalt operand without a guard can be interpreted as
having the guard T (always true)

= More than one guard may be true at a time

0STS dNI

"7 27-Oct-06 INF5150 INFUIT Haugen / Stglen 18

@ UNIVERSITY
:0F; oF osLo
Mg

The pragmatics of guards

= Use guards in an alt/xalt construct to constrain the
situations in which the different alternatives are positive

= Always make sure that for each alternative, the guard is
sufficiently general to capture all possible situations in
which the described traces are positive

= |n an alt-construct, make sure that the guards are
exhaustive. If doing nothing is valid, specify this by using
the empty diagram, skip (defined below)
— This is in order to avoid confusion with the UML standard

" [skip]] £ {{<>}.2)}

— A single interaction obligation where only the empty trace <> is
positive and the set of negative traces is empty

27-Oct-06 INF5150 INFUIT Haugen / Stglen

19

z
T
a1
[y
a1
o

<44 UNIVERSITY
“¥F; orosLo
e

7

sd DecideAppTime
From O to

4 iterations
(with seq
between)

:Client AppSystem

Negative behavior

appointmentSuggestion(time)

loop {0...4}

= yeto, refuse and assert o)
introduce negative veto| | appointmenthiade()
behavior -

appointmentSuggestion(time)

‘ appointmentMade() may not occur ‘
here

xalt i yes()

alt appeintmentMade()

‘ noAppointment() may not occuﬁ\ '
instead of appointmentMade() here refuse

noAppointment])

noAppointment () is the only el
message that may occur here assert, noAppointment()

27-Oct-06 INF5150 INFUIT Haugen /.

0STS dNI

. UNIVERSITY
.~ OF 0SLO

refuse

= [[refuse d]] £ {(©pun) | (pun)<[[d]]}

= All interaction obligations in [[refuse d]] have empty
positive sets

0STS dNI

» This means that all interaction obligations in

[[d, seq (refuse d,)]] have empty positive sets
— and the same applies to [[(refuse d,) seq d,]]

W

T
=
27-Oct-06 INF5150 INFUIT Haugen / Stalen 21

“ UNIVERSITY
 OF 0SLO

Veto
= [[skip]] £ {{<>}.9)}

= [[veto d]] & [[skip alt (refuse d)]]

= ... which means that
[[veto d]] = {({<>}.pun) | (pUn)E[[d]]}

= veto and neg have identical semantics

Z
S
g1
[ty
a1
o

W

&
=
27-Oct-06 INF5150 INFUIT Haugen / Stglen 22

% UNIVERSITY 3d DecideAppTime

s OF OSLO
- Client :AppSystem
Veto Or refuse? appointmentSuggestion(time)
. . loop {0..4} !
= Should doing nothing be "
possible in the otherwise veto, | appointmentitade(

negative situation?
— If yes, use veto

appeintmentSuggestion(time)

— If no, use refuse a ves)
alt appointmentMade()
It is OK to do nothing between no() retuse _
and appointmentMade() noAppontment()
naf)
assert ‘ noAppeintment()

It is not OK to do nothing after yes()

27-Oct-06 INF5150 INFUIT Haugen / Stglen

23

0STS dNI

“ UNIVERSITY
; OF OSLO

assert (1)

» By using assert, all inconclusive traces are redefined as
negative

» This ensures that for each interaction obligation, at least
one of its positive traces will be implemented in the final
implementation

" [[assertd]] £ {(p.nu(F\p) | (p.N)<[dI}

W

X

*
=0
27-Oct-06 INF5150 INFUIT Haugen / Stalen

24

Z
S
g1
[ty
a1
o

% UNIVERSITY sd DecideAppTime

veto appeintmenthade()

appoinimentSuggestion|time)

xalt yesi)

alt appointmenthade()

Sending noAppointment() is
the only acceptable
response to the no()

message at this point

refuse
noAppaintment()

nof}

assert noAppaintment()

27-Oct-06 INF5150 INFUIT Haugen / Stglen

s OF OSLO —
Client ‘AppSystem
a'S S e rt (2) appeintmentSuggestion(time)
loop {0...4}
nof}

25

0STS dNI

“ UNIVERSITY
; OF OSLO

The pragmatics of negation

= To effectively constrain the implementation, the
specification should include a reasonable set of negative
traces

= Use refuse when specifying that one of the alternatives in

an alt-construct represents negative traces

= Use veto when the empty trace (i.e. doing nothing) should
be positive, as when specifying a negative message in an

otherwise positive scenario

= Use assert on an interaction fragment when all positive
traces for that fragment have been described

7
30

7 27-Oct-06 INF5150 INFUIT Haugen / Stglen

26

0STS dNI

4 UNIVERSITY

s OF OSLO
The use of seq conesoponimert
. Cli -AppS!
cancel(appointment) followed by - o
appointmen;(_:an_celled() _followed by cancel(appointment)
nothing is negative
xalt [appointment < now + 24h |
cancel(appointment) followed by] emoriessagel)

appointmentCancelled()
followed by the positive traces

. ang refuse
of Payment is positive

appointmentCancelled|)

0STS dNI

! appointmentCancelled|)
= Atrace is not necessarily)
negative even if a prefix of it is e gt
negative '
» The total trace must be
considered when categorizing it [else]
as positive, negative or
inconclusive

¥

er

27-Oct-06 INF5150 INFUIT Haugen / Stglen 27

“ UNIVERSITY
; OF OSLO

The pragmatics of weak sequencing

» Be aware that by weak sequencing

— a positive sub-trace followed by a positive sub-trace is positive
a positive sub-trace followed by a negative sub-trace is negative
a negative sub-trace followed by a positive sub-trace is negative
a negative sub-trace followed by a negative sub-trace is negative
the remaining trace combinations are inconclusive

Z
S
g1
[ty
a1
o

* Remember the definition:
(PN Z(PaN2) £ (P12P,, (N ZP)U(NZN,)U(Pi2N,))

W

1o
=y
7 27-Oct-06 INF5150 INFUIT Haugen / Stglen 28

=y

. UNIVERSITY
.~ OF 0SLO

The pragmatics of refining interactions

gl

27-Oct-06 INF5150 INFUIT Haugen / Stglen 29

0STS dNI

X

“ UNIVERSITY
; OF OSLO

The use of supplementing

» |nconclusive trace are recategorized as either
positive or negative (for an interaction obligation)
= New situations are considered
— adding fault tolerance
— new user requirements

= Typically used in early phases

W

*
=0
27-Oct-06 INF5150 INFUIT Haugen / Stalen

30

0STS dNI

“f9% UNIVERSITY

; OF OSLO

Supplementing of interaction obligations

= (p,n) ~, (p’,n’) € pcSp’A nen’

Lk

B

s

Ly

.7

[[a]]:

27-Oct-06 INF5150 INFUIT Haugen / Stglen

z
@ Positive E
Supplementing Inconclusive S
4")#,
T
UNIVERSITY
“/F, OFosLo
Supplementing of specifications
* d~w d €Vog[[d]]:d0’€[[d’]]: 0 ~, 0O’
[[d]]:
z
M
&
3

(4" UNIVERSITY sd DecideAppTime

\ s OF OSLO —_
. :Client “AppSystem
Example of supplementing [t s |
loop {0...4})
sd DecideAppTime no{)
‘Client AppSystem) . veto appointmentMade()
3 appointmentSuggestionitime) appointmentSuggestion|time)
xalt i yes{)
appointmentMade() T —
xalt | yes() =
o ") intmentMade() o
neAppaintment() : L e 5
o
refuse
——) r noAppointment|)
naf)
assert noAppointment])
— f
£
it 27-Oct-06 INF5150 INFUIT Haugen / Stglen 33
5% UNIVERSITY
"\.h‘” s OF OSLO
The pragmatics of supplementing
= Use supplementing to add positive or negative traces to
the specification
= When supplementing, all of the original positive traces
must remain positive, and all of the original negative
traces must remain negative =
. T
* Do not use supplementing on the operand of an assert a
3
i
{
v 27-Oct-06 INF5150 INFUIT Haugen / Stglen 34

" UNIVERSITY

: OF OSLO

Narrowing

» Reduce underspecification by redefining positive traces
as negative

= For example adding guards, or replacing a guard with a
stronger one
— traces where the guard is false become negative

<
<

{:: ‘ guard is false become negative

¥

[else]
appointmentCancelled()
DecideAppTime

ref
DecideAppTime

For each operand, traces where the

27-Oct-06 INF5150 INFUIT Haugen / Stglen 36

z
b b b 7 — 7 -n
= (p.n) ~, (p7.07) £ p’SpA n'=nU(p\p’) o
a1
b def . b b . b
s d -~ d @Voe[[d]]:30’ €[[d"]]: 0 ~, 0 &
Positive
(Inconclusive) Narrowing
£ Negative
£
¥ 27.0ct06 INF5150 INFUIT Haugen / Stglen 35
£45% UNIVERSITY
5 OF OSLO
R
Example of narrowing
sd CancelAppointment . . sd CancelAppointment .
Client :AppSystem :Client AppSystem
cancel(appointment) cancel(appointment)
xalt i errorMessage() i . xalt . [appointment ﬂn-ow+ 24h] . 'IZ_'I
. errorMessage() (6]
appointmentCancelled() G
o

@ UNIVERSITY
7 OF OSLO
The pragmatics of narrowing

= Use narrowing to remove underspecification by redefining
postive traces as negative

» In cases of narrowing, all of the original negative traces
must remain negative

= Guards may be added to an alt-construct as a legal
narrowing step

» Guards may be added to an xalt-construct as a legal
narrowing step

= Guards may be narrowed, i.e. the refined condition must
imply the original one

z
T
a1
[y
a1
o

27-Oct-06 INF5150 INFUIT Haugen / Stglen 37

<44 UNIVERSITY
“¥F; orosLo
ey

The use of detailing

» Reducing the level of abstraction by structural
decomposition
— One or more lifelines are decomposed

» The positive and the negative traces are the same,
except that
— internal communication is hidden at the abstract level

— events occuring on a composed lifeline at the abstract level occur
instead on one of the component lifelines

0STS dNI

"*'.3,'] 27-Oct-06 INF5150 INFUIT Haugen / Stglen 38

G

S0

¥

4 UNIVERSITY

: OF OSLO

Example of detailing

Note that a UML principle
has been broken here.
Don't try this at home!

sd Payment

:Client ‘Billing

pleasePay(amount, appeintment)

pay({cardData, amount, appointment)

assern

paid(amount,appointment)

27-Oct-06

sd Payment

:Client ‘AppSystem

pl Pay{amount,appoi it}

payicardData, amount,appointment)

assert paid{amount appointment)

:Calendar

INF5150 INFUIT Haugen / Stalen

Components of
AppSystem
needPay(appointment) Internal
communication

paymentReceived{appointment)

39

0STS dNI

W

X

¢

[

)
Z

2 UNIVERSITY

5 OF OSLO

Detailing

to abstract lifelines

L is a mapping that defines the translation from concrete

— L={Client—Client, Billing— AppSystem, Calendar— AppSystem}
— This implies that Billing and Calendar are components of

AppSystem

t according to L
E is a set of abstract events

— Necessary to allow messages that an abstract lifeline sends to
itself to be visible in the abstract diagram

of concrete traces s into a set of abstract traces
— by removing all internal events (w.r.t. L) that are not in E

27-Oct-06

INF5150 INFUIT Haugen / Stglen

subst(t,L) is a function that substitutes lifelines in the trace

abstr(s,L,E) is an abstraction function that transforms a set

40

Z
S
g1
[ty
a1
o

. UNIVERSITY
.~ OF 0SLO

Formal definition of detailing

= (p,n) ~E (p’,n") &€ p=abstr(p’,L,E)A n=abstr(n’,L,E)

» dw bEd #Voe[[d]]:Fo’€[[d’]]: 0 ~ LE 0

z
sd Payment T
a1
(=Y
Client “Bilkng :Calendar g
needPay(appaintment) Internal events not
pleasePay(amaount, appointment) O visible at the
] Data, amount, nent) abstract level
assert ! paymentReceived(appointment)
paidiamount, appointment) O
%'%) 27-Oct-06 INF5150 INFUIT Haugen / Stglen 41
5% UNIVERSITY
"\.h“ s OF OSLO
The pragmatics of detailing
» Use detailing to increase the level of granularity of the
specification by decomposing lifelines
» When detailing, document the decomposition by creating
a mapping L from the concrete to the abstract lifelines
= When detailing, make sure that the refined traces are z
equal to the original ones when abstracting away internal &
communication and taking the lifeline mapping into S
account
i

&
=
27-Oct-06 INF5150 INFUIT Haugen / Stglen 42

% UNIVERSITY
0 © or osLO

The use of general refinement

= A combination of supplementing, narrowing and detailing
— (not necessarily all three)

= Allows all positive traces to become negative, while
previosly inconclusive traces become positive

[7T=hour=17]
needApp(hour)

DecideAppTime

DecideAppTime

e
g

¥ 27-Oct-06 INF5150 INFUIT Haugen / Stalen 44

» To ensure that a trace must be present in the final z
implementation we need an interaction obligation where
all other traces are negative 3
M'
o
‘7 27-Oct-06 INF5150 INFUIT Haugen / Stglen 43
\ UNIVERSITY
% s OF 0SLO
R
Example of general refinement
sd MakeAppointment
. sd MakeAppointment J | 1
I :Client ‘AppSystem
:Client ‘AppSystem . |
i ' Can [tue] |
ul ' needApp()
alt needApp(date) ‘ y 2
[i 1 | \ ! [date today | E
needApp(hour) - needApp(date) G
- | . '])

G

4 UNIVERSITY

@ OF 0SLO
e

The pragmatics of general refinement

= Use general refinement to perform a combination of
supplementing, narrowing and detailing in a single step

» To define that a particular trace must be present in an
implementation use xalt and assert to characterize an
obligation with this trace as the only positive one and all
other traces as negative

A

27-Oct-06 INF5150 INFUIT Haugen / Stglen 45

0STS dNI

X

<44 UNIVERSITY
“¥F; orosLo
ey

Limited refinement

= Limits the possibility of adding new interaction obligations
= Typically used at a later stage

= d’ is a limited refinement of d if
— d’ is a general refinement of d, and

— every interaction obligation in [[d’]] is a general refinement of at
least one interaction obligation in [[d]]

[[d]]:

o [0 o)) (s\euny) (a\psuny)

& n, \Er’:rz/ N
7 27-Oct-06 INF5150 IN Haugen / Stglen 46

Z
S
g1
[ty
a1
o

@ UNIVERSITY
'!f

: OF OSLO
icos

The pragmatics of limited refinement

= Use assert and switch to limited refinement in order to
avoid fundamentally new traces being added to the
specification

= To specify globally negative traces, define these as
negative in all operands of xalt, and switch to limited
refinement

27-Oct-06 INF5150 INFUIT Haugen / Stglen 47

z
T
a1
[y
a1
o

<44 UNIVERSITY
“¥F; orosLo
ey

i

Compositionality

= A refinement operator ~ is compositional if it is
— reflexive: d~d
— transitive: dwd’A d’wd”” = dwd”’
— monotonic w.r.t. refuse, veto, alt, xalt and seq:
* d~d” = refuse d ~ refuse d’
= d~d = vetod ~ veto d’
= d~~ d’Adyw) = d; altd, ~ d,” altd,’
= d;~ d’Ad,w d, = d; xaltd, ~ d;” xalt d,’
» d;~ d,’A d,~ d,” = d; seqd,~ d;’ seqd,’
= Transitivity allows stepwise development

= Monotonicity allow different parts of the specification to be
refined separately

= Supplementing, narrowing, detailing, general refinement
and limited refinement are all compositional ©

27-Oct-06 INF5150 INFUIT Haugen / Stglen 48

0STS dNI

