
14-Sep-06 INF5150 Unassailable IT-systems 1

IN
F 5150

State Machines with automatic code
generation to JavaFrame

Version 060915

14-Sep-06 INF5150 Unassailable IT-systems 2

IN
F 5150

Our goals

A good way of thinking for
– modelers
– programmers

such that their programs will become:
– rapidly made according to specification
– have high quality
– be efficient
– maintainable by competent persons
– be adaptive to a changing environment of requirements and third

party software

This should apply to large and small programs

14-Sep-06 INF5150 Unassailable IT-systems 3

IN
F 5150

Finite State Machines

Finite
– a finite number of states
– [here] a small number of named states

State
– a stable situation where the process awaits stimuli
– a state in a state machine represents the history of the execution

Machine
– that only a stimulus (signal, message) triggers behavior
– the behavior consists of executing transitions
– may also have local data

14-Sep-06 INF5150 Unassailable IT-systems 4

IN
F 5150

The Knoble game

A game administrator controls the game
Invites the players
The players make a draw like:

The game administrator calculates the scores

14-Sep-06 INF5150 Unassailable IT-systems 5

IN
F 5150

The Knoble context

Part

Part

input portoutput port

composite structure

14-Sep-06 INF5150 Unassailable IT-systems 6

IN
F 5150

What happens?

14-Sep-06 INF5150 Unassailable IT-systems 7

IN
F 5150

Player: first attempt
Initial state

(simple) state

trigger

effect

transition

14-Sep-06 INF5150 Unassailable IT-systems 8

IN
F 5150

Player: why it is not sufficient

14-Sep-06 INF5150 Unassailable IT-systems 9

IN
F 5150

Player: second solution

14-Sep-06 INF5150 Unassailable IT-systems 10

IN
F 5150

GameAdmin: are these diagrams acceptable?

14-Sep-06 INF5150 Unassailable IT-systems 11

IN
F 5150

GameAdmin: first attempt

14-Sep-06 INF5150 Unassailable IT-systems 12

IN
F 5150

Demo Knoble2 (running JFTrace)

14-Sep-06 INF5150 Unassailable IT-systems 13

IN
F 5150

UML JavaFrame Profile Model analysis

Object Model Property Model

subscA subscB subscA subscB

hook off
call
reply

class SubscA extends StateMachine
{ SubscB subscB;
 int stateIdle, stateBusy, ...;
};
class Idle extends State
{ int run()
 { };
};
class IdleHookOff extends Transition
{ ... };

Trace
Process State Message Next

subscA Idle hookoff Wait
subscB...Idle...call....Conv
subscA...Wait...reply...Conv
...

s
p
e
c
i
f
i
c
a
t
i
o
n

d
e
s
i
g
n

describe

compare
program

execute

compare

14-Sep-06 INF5150 Unassailable IT-systems 14

IN
F 5150

State Machines: unassailability?

Understandable
– think locally, act globally
– states represent compressed representation of execution history

Robust
– detect errors through discovering undefined transitions

Maintainable
– make additions and alterations with a minimum of ripple effects

Analyzable
– systems of state machines can be handled by model checkers
– compare sequence diagrams with state machine(s)

14-Sep-06 INF5150 Unassailable IT-systems 15

IN
F 5150

PlayerSM: Compare these versions!

what if ’play_now’ is
received here?

this state machine
does not detect

sequence errors!

14-Sep-06 INF5150 Unassailable IT-systems 16

IN
F 5150

And now adding a new feature ...

and by adding a feature to the model,
needing another feature from the language

14-Sep-06 INF5150 Unassailable IT-systems 17

IN
F 5150

Knoble: Now we add another requirement

Assume that the Player may at any time receive a
’suspend’ message from the GUI
This should have the effect that
– the player will not play
– until he/she receives a paper/stone/scissors message from GUI

then such a message is directly a move

We would like to make this change
– as compact as possible
– without changing much of what is already made functioning

14-Sep-06 INF5150 Unassailable IT-systems 18

IN
F 5150

PlayerSM: Introducing Submachine states

Submachine state:
almost the old
implementation

transition triggered
by suspend if not
handled inside P

entry point transition fragment

14-Sep-06 INF5150 Unassailable IT-systems 19

IN
F 5150

Playing: almost like the old Player with entry

entry point

transition fragment

14-Sep-06 INF5150 Unassailable IT-systems 20

IN
F 5150

Demo Knoble4 (not running JFTrace)

14-Sep-06 INF5150 Unassailable IT-systems 21

IN
F 5150

Entry and Exit behaviors
Entry behavior will
execute whenever
the state is entered

14-Sep-06 INF5150 Unassailable IT-systems 22

IN
F 5150

Summary State Machines

State
– finite number
– simple or composite (submachine states)

Transition
– trigger
– effect

Exit and Entry Points
– interface points within a runtime transition

Exit and Entry Behaviors
– behavior to be executed every time the machine exits or enters

the state

State machines may have variables (and parameters)

14-Sep-06 INF5150 Unassailable IT-systems 23

IN
F 5150

JavaFrame – the target framework

which can in principle be used all by itself

14-Sep-06 INF5150 Unassailable IT-systems 24

IN
F 5150

UML and Java: JavaFrame - the solution

Java

JavaFrame

modeling by
programming

JavaFrameUML

Java

JavaFrame

mapping

UMLJavaFrame

Java

JavaFrame

transformation

Java

JavaFrame

UML

transformation

14-Sep-06 INF5150 Unassailable IT-systems 25

IN
F 5150Asynch.

Interacting Active
Objects

INF 5150 /
INF 2120 .

UML to
JavaFrame

transformation

Thread-safe, runtime
effective, reentrant
composite states

Observation
tool, input

dialog

2002 – 2004:
•ERICSSON:
•Avantel: Amigos
•UML 2.0 laboratory
•ARTS

JavaFrame – the object framework

14-Sep-06 INF5150 Unassailable IT-systems 26

IN
F 5150

Experiences - The Lego Mindstorm experiment

socket mediators

sockets

sockets
client traceserver trace

server client

control

14-Sep-06 INF5150 Unassailable IT-systems 27

IN
F 5150

MultiTube

Tube

Stimuli Response

JavaFrame 6.92ms Trad. method 10.13ms

Experiences - The Performance Model

14-Sep-06 INF5150 Unassailable IT-systems 28

IN
F 5150

JavaFrame transition vocabulary

sending asynchronous signals
– output(<the signal>,<the port>,<current state machine>)

<the signal>
– new SignalType(parameters)
– sig

meaning the signal just consumed as trigger

<current state machine>
– csm

<the port>
– csm.portname

State machine variables
– csm.variablename

14-Sep-06 INF5150 Unassailable IT-systems 29

IN
F 5150

RSM coding rules for state machines (1)

Trigger of transitions
– Name of the transition
– or Generate a SignalTrigger by rightclicking on transition

Effect of transition
– Name of effect
– or Use one Action within an Activity diagram (forget flow lines

etc.) created when doubleclicking the effect icon.

Inside the effect
– JavaFrame statements
– or Branch by using Choice points

outgoing transitions from a choice point should have a guard
(predicate condition for this piece of the transition)

14-Sep-06 INF5150 Unassailable IT-systems 30

IN
F 5150

RSM coding rules for state machines (2)

output (Signal, Port, csm)
– sends a signal through the local port.
– typically the signal is like ”new S(parm1, parm2)”
– typically the port is like ”csm.toSomewhere”
– ”csm” is like a keyword meaning ”current state machine”

To read from the consumed signal, use ”sig”
– sig has been cast to the right type (normally)
– Example: ”sig.parm1” when sig is consumed as object of class S

UML defer
– to add a deferrable trigger, make sure the trigger to be deferred

has a signaltrigger element in the state machine
– right click the state > Properties > DeferrableTrigger and add the

appropriate signaltrigger.
– But you will not see the defer in the diagram – only in the model

	State Machines with automatic code generation to JavaFrame
	Our goals
	Finite State Machines
	The Knoble game
	The Knoble context
	What happens?
	Player: first attempt
	Player: why it is not sufficient
	Player: second solution
	GameAdmin: are these diagrams acceptable?
	GameAdmin: first attempt
	Demo Knoble2 (running JFTrace)
	UML JavaFrame Profile Model analysis
	State Machines: unassailability?
	PlayerSM: Compare these versions!
	And now adding a new feature ...
	Knoble: Now we add another requirement
	PlayerSM: Introducing Submachine states
	Playing: almost like the old Player with entry
	Demo Knoble4 (not running JFTrace)
	Entry and Exit behaviors
	Summary State Machines
	JavaFrame – the target framework
	UML and Java: JavaFrame - the solution
	JavaFrame – the object framework
	Experiences - The Lego Mindstorm experiment
	Experiences - The Performance Model
	JavaFrame transition vocabulary
	RSM coding rules for state machines (1)
	RSM coding rules for state machines (2)

