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What shall we learn in school today?

= Why your java programs fail

— The solution
= thinking in a way corresponding to how your program will work

= Methodology

— Some useful tips

= Dialectics — making conflicts drive the development
— early conflicts are less dangerous
— people with complementary competence is fruitful
— complementary views help see the whole picture

= The need for harmonization
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Why your normal Java program fails

0STS AN

- or how to think in correspondence with how
the computer works
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Agreeing on which movie to watch

= A group of persons are going to agree on which movie to
watch this evening

= There is only a small number of movies (less than the
number of persons). One can assume that the decision
can be based on democratic principles: the movie with
most votes win.

= We will use three different ways of communication:

— (half-) duplex two-party telephony (synchronizing
communication)

— conference call (synchronous communication)
— SMS (asynchronous communication)
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Synchronizing communication

msc moviel m persl is the
persl pers2 pers3 master
whatmovie = pers2 and pers3
] are slaves
i iwhatmovie(pz::m = persl cannot
T whatmovie perform anything

A 4

while pers2 and
whatmovie(p3:=m1) per§3 are trying to
e decide for
themselves

‘decide’
tickets(3,m1)

tickets(idnor
_________ ’_I_
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Synchronous communication

msc movie2 = persl is the
persi pers2 pers3 central
whatmovie = pers2 and pers2
fmovie(pz::mZ) i _movie(m2=:p2) : are co-workers
. movie(pB::ml)/ ) movie(p3:=m1) = neither of the

<

) persons can do
anything while the
communication
lasts

OGTS dNI

‘decide’

tickets(3,m1)
—>

» (this is informal
MSC since MSC-
2000 have no

f mechanisms for
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Asynchronous communication

persi pers2 pers3 central
whatmovie . = pers2 and pers2
whatmovie are co-workers
1 movie(p2:=m2) = persl can do
) other kinds of Z
o : T
| movie(p3==m1) work while pers2 &
o
o

T and pers3 decide
their opinions
‘decide’ » pers2 and pers3
ask_tickets(3,m1) can make up their
opinion in parallel

A

tickets(idno)
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Threads

SR

Threads are flows of control

— the metaphor is that the threads go through the web of objects like a
thread in the fabric of a shirt that is sewn

Threads are said to be “light weight processes”?!
— threads are not operating system tasks
— threads refer to the same address space (object space)
— threads must be considered concurrent
What is the canonical mental model of threads?
— this is a very hard question, and we shall try and look at this ....
Are there simple ways to ensure thread-safe programming in Java?
— there is no simple way, but some approaches are safer than others
Threads can be used to enforce priority
— but be conscious about what you can achieve through priority
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Threads 1

msc moviel

persl

whatmovie

pers2

whatmovie(p2:=m?

pers3

INF5150 INFUIT Haugen / Stalen

= one thread

* in fact the whole
system is
sequential!

= anybody can
program this in
Java

OGTS dNI



l

- ‘”‘A

%) UNIVERSITY
; OF OSLO

Threads 2

msc movie3

persl pers2

pers3

whatmovie

\ s
rrEr
|

I movie(p3:=m1)

12-Oct-06
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there are two
Independent threads
of control

In fact there could
be even more since
pers2 and pers3
could have had
other business to
attend to!

as itis, itis a fairly
simple “fork” / “join”
and quite simple to
program

such a local fork and
join is still almost
sequential
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Threads 2 (more)

msc movie3

pers3

12-Oct-06
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= Problems
— technical
— conceptual

» |f persl following
messages movie
also updates the
count for each
movie, there is a

concurrent update

problem

= \Who are the

threads? Are they

concepts?
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Threads 3 (JavaFrame / UML / SDL)

msc movie3 = persl, pers2 and
pers2_|Scheduler_pers3 pers3 are all
: ActiveODbject
whatmovie
whatmovie = they are |
StateMachines

- movie(p2:=m2)

= perslis Leader

= pers2,pers3 are
Followers

= There is one (or
‘ddcide’ more Threads)

ask_tickels(3,m1) controlled by

Schedulers

tickets(idno = Schedulers are
| | | | | | hidden for the
{;””‘ , programmer

: movie(p3:=m1l) N
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Object Orientation

* The objects are the performers / executors
» They themselves perform their methods
* |[n Java In fact the Threads are executing the methods

* This means that the same object may be executed from
different Threads, but conceptually being one active
object in itself
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Why we make errors with Threads in Java

* You use another Thread to achieve higher speed

— usually wrong, if it is on the same machine, it will slow the
machine down, not speed it up

= You use several Threads, but lose track of them because
they are not associated closely with concepts

— You use several Threads, but your concept of the ActiveObjects
are not associated with them

= You are using a synchronizing approach and believe that
the program is essentially sequential, but alas...

— another programmer does the same, but your Threads interact
without synchronization on some obscure common object

* You know about Thread problems and use synchronized
methods to a large degree
— either you run into deadlock, or very inefficient programs
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Why use several Threads in Java?

= There are real external stimuli that should be handled according to
Interrupts

— it would be better if all (or many) interrupts could be handled by the
same Thread since Threads consume resources

= There are some parts of the system that requires better priority than
the rest

— Giving priority could give improved performance
= duration of transitions vary considerably
— Certain urgent operations are done in time,

— but priorities should not be used in reasoning about the overall
functionality

* The system is physically distributed over several machines

— Then it is obvious that we need more than one JVM (Java Virtual
Machine)

0STS ANI
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Why UML 2 / JavaFrame is different

* The predominant model of UML 2 State Machines /
JavaFrame is that of telecom:

— concurrency Is an opportunity, not a mere threat
= Execution logic is tied to the programming concepts

= Execution performance discriminates between the
programmers’ level and the execution platform
— Threads are dealt with separately from the functional logic

= High degree of independence implies:
— parallel design possible
— modifiability / flexibility
— early simulation / prototyping
— known validation approaches

* |n short: dependability with less efforts
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Methodology
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originally from
Braek&Haugen
"Engineering Real Time Systems” from 1993
made in the SISU project
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The goals of the design

» Readable in the deep semantic sense that it supports
collective understanding in a project team. It should
support unambiguous communication among project
members and in-depth understanding by the individual.

= Analyzable in the sense that properties can be derived
and compared with reguirements.

* Implementable in the sense that the described
functionality can be implemented in a way that satisfies
non-functional requirements.
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S-rules on concurrency

= Model independent and parallel behaviors as separate

Processes.

Parallelism is a real world fact

Parallel processes do not interfere with each other

Concurrent processes help to achieve encapsulation and modularity
Concurrency implies a logical separation of substance

Process A

Process B ProcessA*B

OGTS dNI
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S-rules on structuring

* Interconnections
— Use one channel and/or signal route to carry each independent
and concurrent interaction dialogue.
= system and environment

— For the elements at the periphery of your concern, place them
Inside the system if you wish to describe their behavior in detall

— If you are merely interested in their signal interface, place them in
the environment which means they will not be identified explicitly
in UML
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S-rules on purpose of composite structures

» Gradual approach to detall

= Units of reuse and repetition;

= Encapsulation of layering;

= Encapsulation of independent adaptation and change;
= Limited scope of process creation and communication;
= Correspondence with the physical system.

OGTS dNI
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The Actor architecture

/The controlling state
machine — often
performs routing

{2 Actor

o controller ; ActorController
o jnneractars | Actor

—

§a inp;e; /

controller : ActorController
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ukp _
ﬁhe Inner actors — at
SimpleRouterMediator the leaves, these are
or MultiCastMediator state machines, too

ir1[3 :Ei; A————_————______——————————————————————————————\\\-...__-

] -
D“ﬁ inneractors @ Actar [*]

8
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Does the pattern apply to the Basic Service?

() EpusJ

4 The controlling state
machine — often
performs routing

—

controller : GposController

framuser ; SmsInputMediator = ARGS[O], ARGS[0]

Manual_input : Manualsms

Framjasﬂ:n:nring

H

™1
[
to_pasitioning : MultiCastMediator to_pasitioningZ ; 1dRouting

The Inner actors — at
the leaves, these are

state machines, too
L from cugqullerz

|-
= users ¢ PositionUser [*] %‘

INF5150 INFUIT Haugen / Stglen 23
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touser : SmsOutputMediator = ARGS[0],
fram | contraller

SimpleRouterMediator
or MultiCastMediator
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The purpose of Ports

= Ports represent interfaces
— that are separate from their owner

= Ports may therefore remain while the owner is exchanged

— change implementation during runtime without having to traverse
the whole architecture to update the connectors

= Ports represent the only way to communicate with their
owner
— encapsulation

= Ports are often used for simple routing
— while more complicated routing is done by state machines

= Use Ports always
— even though UML 2 does not require them
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S-rules on state machines

= state orientation

— Represent what the environment may distinguish as control states
of the process, as states in the process graph.

= decisions

— Critically review all decisions to ensure that they are not
symptoms of undesirable state hiding.

» signal set

— Represent what the environment may distinguish as different
control signals by different signal types

= control flow
— Branch on input signals in states rather than on decisions.
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Does this apply to GposController?

iy EpusEuntrullerJ

@ Initial Bction
”

» State orientation
» Decisions

* Signal set

e Control flow

o3 theState h
@ CollectPositions
Timer [csm.no users=01] o
@ Mo start swrite fil
2]
The smes is now: @ cemwritefile_timer. start Timer(); PosReturn
Studl konto oysteinh o
reg my-ident @2 Write out ople elerment
. .
[csm.counter_users ==_csm.no_users]
@2 Write out end
Sms
[eamenane!es eg")] nurnberofusers
&0 create new User w rmand ]
& output (e Sms( Yol message could not be recognized”, sig.getFrom(), "2034 ™), csrm.tousers, csm )
12-Oct-06
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S-rules for the use of data

= Proper use of data

— non-decisive data

= when the process graph structure is not dependent on the data
values

— context knowledge

» to keep information about the situation and structure of the
environment

— loop control data
= to control loops that are not terminated by specific signals
» shared data
— Introduce special processes to encapsulate shared data.

— Encapsulate data needing independent access in separate
processes.
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staticld \

visualld
lastpos_time
TimerMsg posreq

Does this apply to PositionUser?
< PositionUser valid POS
 xcoord

@ csmuvalidpos=false;csm.xcoord=null;csm. yooord=null; output{new PosRequest{csm.staticld), csm.to_users, csm); wcoord /

UNIVERSITY
OF OSLO

[Rd=Ialne
. G output(new PosReturnicsm.lastpos_time, csm. xcoord, csri. yooord, csm, validpos, csm. staticId, csm.visualld ), csm. to_controller, csm);
s "y
3 WaltTimer
PosResult
. £

\

&2 Systarn.err . printin "PositionlUser  Wait Tirmer: unexpected PosResult "+new Dated ). toString());
Timerisg

0STS ANI

@3 output{new PosReguesticsm,staticld), csm.to_users, csm);
PosRegult

&3 Positioning 7

@2 'WaitPosResult

|| csm.posrequest_timer, start Timer (15000);

GivePos

@ outputinew PosReturnicsm.lastpos_time, csm. xcoord, csmycoord, csm. validpos, csm.staticId, csm. visualld ), cerm, to_controller,csm);

TimerMsg

@ Systern.err. printing "Positionlser  WaitPosResult: unexpected TimerM:sg "+hnew Date() toString( ) outputines PosRequest(csmm.staticld),csrm. to_users,csm);

12-Oct-06 INF5150 INFUIT Haugen / Stalen 28
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Dialectic System Development
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how to take advantage of conflicts

i

pixie

“Z 12-Oct-06 INF5150 INFUIT Haugen / Stglen 29



The language maturity staircase

SDL Automatic semantics: machine-oriented

MSC Formal Semantics: mathematical notation

Z

TI

. . . ol

UML Semantics: explained understanding cl?1
o

Visio Syntax: given syntax with illustrative add-ons
Doc. figs. | Hlustrations: one notation for each picture, natural language resemblence critical
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http://www.theregister.co.uk/2006/07/13/zidane_headbutt_outrage/
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Access Control System

Mains Optional network
Control Box
Reader
___,..-F""
_
Exit Suilch ] Optienal Second
Raader

Contacts I_I'_:
oniac Lock Release

12-Oct-06 INF5150 INFUIT Haugen / Stalen
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Domain Statement

= Area of concern

— Access control has to do with controlling the access of users to access
zones. Only a user with known identity and correct access right shall be
allowed to enter into an access zone. Other users shall be denied
access.

= Stakeholders

— Users of the system, those responsible for the security of the access
zones.

= Services
— The user will enter an access zone through an access point.
— A supervisor will have the ability to insert new users in the system.

— Users shall be able to change their secret code.

» The authentication of a user shall be established by some means for secret
personal identification (code). The authorisation is based upon the user
identity and access rights associated with the user.

i

12-Oct-06 INF5150 INFUIT Haugen / Stalen 33
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Service: Change PIN

» Informal specification:

—"Users shall be able to change
their secret code”

e

ChangePIN

aUser

&
=9
| “Z 12-Oct-06 INF5150 INFUIT Haugen / Stalen
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Make More Precise

= formalize
— move the description to a more formal language

= refine

— narrow
= add more properties to make it less ambiguous

— supplement
» add new aspects, consider supplementary scenarios

12-Oct-06 INF5150 INFUIT Haugen / Stalen
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Improve Precision: Service and Role orientation

sd PIN_Change_OK

/

User

PINChanging

ChangePIN()

EnterOIdPIN()

OldPIN()

EnterNewPIN()

NewPIN()

OK()

|
|
|
|
&
N
|
|
!
|
|
IN
|
|
|
|
k
|
|
|

N N N

12-Oct-06

formalizing

™~

Consistent? narrowing

™~

service PIN Change

» Users shall be able to change their
personal identification

OGTS dNI

e The User shall be able to choose his new
PIN

 The Card shall be validated by the old
PIN before a new PIN can be given. The
new PIN shall subsequently also be
validated.

supplementing

INF5150 INFUIT Haugen / Stalen 36
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Supplementing

sd PIN_Change )

User PINChanging

Interaction occurrence (use)

ref

ChangePINinvoc

ref ValidatePIN
! !
. break | OIdPIN_NOK() 1
break expression oreakc K !
1 ]
1 1

J GiveNewPIN

0STS AN

ref
ref J ValidatePIN
break

NewPIN_NOK()

Idle >

o i

continuation

12-Oct-06 INF5150 INFUIT Haugen / Stglen 37
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The Access Control Context as UML Class

class name
ACContext
sd sd | [ sd J | S )
USerAccess | [ PINChange ‘ Upenboor defining interactions
sd J sd J sd
ewUser [ EstablishAccess AéivePlN utility interactions

0STS AN

User \
ACSystem Supervisor .
/ composzte Structure
NewUser

12-Oct-06 INF5150 INFUIT Haugen / Stglen 38
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System services

sd New_User ) sd UserAccess )

NewUser Supervisor ___ACSystem____ NewUser ___ACSystem_
: : ref AC_NewUser ref AC_UserAccess

1 I

| | | L L

( | Idlei ) < Idle | >

: ref I I
| - f - (1] 11}
! —) EstablishAccess © EstablishAccess ("lllegal PIN") —
| ("NotSupervisor") i
i I I : : -I-I
| | | o) [PIN OK] &)
: f . : i o

alt | [Wrong PIN] : | "Please Enter!"() | Coﬂ
| "Sorry"() | ! :ﬁ :

I N U S T '

| [PINOK] cadigg | \;) OpenDoor
| — ! ;
: Il Il | |
! ref GivePIN ( Idle )
: [} [} ! I
| Card(Cid, PIN)() | ! | |
S J— |
! ! ! Similarities

( Idle >

12-Oct-06 INF5150 INFUIT Haugen / Stglen 39
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Need for generalization: Entry

sd EstablishAccess(String txt, inst User) )

= On what connectors is

I B oy A eeerd EstablishAccess applied?
C__ we ) — between the AccessPoint and a
 caw | normal User
oy G ' — between the Console and the
ivePIN )
. . Supervisor user =
—/l 00p<0'3>, "Try Again”() i TI
:\ : ACSystem ol
ref GivePIN o
o

I -
<
CardOut() ¢ I#:l ap: AccessPoint[2..100] c: Console M

i
|

]

| e
: /floor Integer {0..4}
I

|

I

msg(txt)()

I A [(—
i I d . aut: Authorlzer[Z] [ ]
C PIN OK )

INF5150 INFUIT Haugen / Stglen 40
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Harmonizing: Entry, AccessPoint and Console

| ACContext

-ACSystem . Lifeline
-uscriireline
-Supervisor : Lifeline
-NewUser : Lifeline

+UserAccess() : sd
+PINChange() : sd
+NewUser() : sd
#EstablishAccess() : sd
#0penDoor() : sd

#GivePIN() : sd

|

Entry

sd AC_EstablishAccess(String txt) )

-Panel : Liteiine
-Controller : Lifeline

+Entry_EstablishAccess() : sd

#Entry GivePIN() : sd

A

AccessPoint

ACSystem

-AccessPoint  Lifeline
-Console : Lifeline

-Authunicer ; Lifeline iy

+AC_UserAccess() : sd

+AC_PINChange() : sd

+AC NewUser() : sd

#AC_EstablishAccess() : sd

#AC_OpenDoor() : sd

#AC_ GivePIN() : sd

12-Oct-06

-Door : Lifeline

+AP_UserAccess() : sd

|
Console

+Console NewUser() : sd
+Console PINChange() : sd

INF5150 INFUIT Haugen / Stalen

IR

| V Entry

Authorizer
a (I
Idle
Cardld()& ‘ : )
%} }
. ! |
2% [rel ] AC_GivePIN
! Code(Cid, PIN)() !
| f
loop<0,3> J } }
! I
! I
"Try Again”() | AccLevel(m)() |
- ! |
oo ref AC_GivePIN
Code(Cid, PIN)()
CardOut() AccLevel(n)()

|
I
I
i
|
|
I
K
1
msg(txt)() }
|

|
|
|
|
|
t
|
|
I
|
|
|
|
|
|
|

41
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The Entry class hierarchy

[
.

AccessPoint /* inherits Entry */

s

AP_UserAccess

<<redefined>>
Controller

c:Controller

12-Oct-06

Entry

sd
ntry_EstablishAccess

sd
Entry_GivePIN

Controller

Panel

c:Controller

Console /*inherits Entry */

sd

Console_NewUser

sd
Console_PINChange

<<redefined>>
Controller

INF5150 INFUIT Haugen / Stalen
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Detailing through commutative decomposition

12-Oct-06

% UNIVERSITY
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msC PIN_Change
ACsystem decomposed
as AC PIN Change

I;l
( EstablishAccess

( Givc?PIN ]

decomposition

msC’AC _PIN_Change
B C

|
AC_EstablishAccess
=3
AC_GivePIN ]

reference

MSC EstablishAccess

ACsystem decomposed

as AC_EstablishAccess
—

—>,

" EStablIShACCess
B C

INF5150 INFUIT Haugen / Stalen
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Change PIN

sd PINChange ) sd AC_PINChange )

AccessPoint Authorizer Console
User ___ACsystem___ e —_— —
ref AC_PINChange Decomposition . . Lref Console_PINChange |

' e ' ) ( Idle )

lgit, "Try again”, msg) AC_ EstablishAccess("lllegal PIN")

| | I’elf J
Lef) EstablishAccess ("lllegal PIN") Cardid. D
opt

|
T NewCode(Cid,PI N)[)
|

| [PIN OK] : : . >
i "Give new PIN"() i Oth i i [PIN OKI]Sive new PIN"() T
D | | | A A
ref GivePIN ref AC_GivePIN Digit() g
i/ "Give PIN again"() i : : “Give PIN again“()
! : i : . -
ref GivePIN ref AC_GivePIN Digit0)
. T | i |
: : It | ' "Wrong PIN"()
opt J ! [wrong PIN] alt ) ! ! [wrong PIN]
| "Wrong PIN"() | —————:——__e______!_____
:N | else]
i |
|

|
|
|
N
T
|
L

( i = i ) C e D

INF5150 INFUIT Haugen / Stalen 44
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Commutative Decomposition

sd AC_EstablishAccess(String txt) )
sd EstablishAccess(String txt, inst User) ) )
Entry Authorizer
-, . - . T
User ACSy_stem eC0mp03|t|0n ( Idle >
| i Cardld() : :
1 1 >| |
| |
. de ) Digt) [ :
i i AC_GivePIN
! Cardid() ! | - |
i N | Code(Cid, PIN)() |
| | | N
| |
ref ; ! ! —
GivePIN loop<0,3> J | | Z
loop<0,3> ] N : "Try Again“() !\ AccLevel(m)() ! ol
K Try Again”() ! Digit) | I -
Igi .
T e ref AC_GivePIN 4
. . | CodeCid, PIN)) |
| |
i/ CardOut() i : :
| | t
alt i i CardOut() !/ AccLevel(n)() i
y msg(txt)() ! L L
. | EV a
C e D [ mg0 | :
T T | |
—_ —_
| | Idle
< PIN OK : : >
| | | e
: : PIN OK )
| |
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Verification 1: Model checking PIN Change in Panel

sd Console_PINChange ) sd Entry_EstablishAccess(String txty

Controller Panel Panel Controller

|ref)

Cardid,Digit, “Try again”, msg()

Entry EstablishAccess("lllegal PIN")

( tdle > Cardid() C \ e

‘ l
— }

ref Entry_GivePIN

Code(Cid, PIN)()

Code(Cid, PIN)()

( Idle

12-Oct-06

INF5150 INFUIT Haugen / Stalen

| |
| o
| | : ,
T [ Ioop<0,3>) ! ‘ =
t ) . | |
op J [PlN‘ OK] msg("Give new PIN")() “'lee new PIN"() "Try Again"() } msg("Try Again")() } AccLevel(m)() %
[ A1 K K
! GivePIN() i ! GivePIN() ‘
| | ! !
: : . 1 =
- . igi .
ref Entry_GivePIN Digit) ref Entry_GivePIN Coﬂ
L Code(Cid, PINY) ; i Code(Cid, PIN)() i Code(Cid,PIN)()
} msg("Give PIN again”)() 'fGive PIN again”() } }
! GivePIN( | Cardout() L Cardout() L AccLevel(n)()
! - ” Digit 1 |
feff Entry_leePIN__,& alt_ | |
‘ Code(Cid, PIN)() | msg(txt)) L msg(txt)() 1
D | ! ‘
alt [wrong PIN] msg("wrong PIN")() | "Wrong PIN"( C ‘ Idle ‘ )
1 | | | |
| NewCode(CidPIND - — — — — — R I e — —
PIN OK
| 3 C |
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Panel: UML State Machine, GivePIN as a method

sm Panel )/ AllPanel \
.\

NoCard
Z
cardout / cardid(cid) L
- <H>cardout / GivePIN, ~code(cid,pin) g'
o1
o
msg(t)/
g OneCard

\ givePIN / GivePIN, "code(cid,piny
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Model checking continued....

sd Entry_EstablishAccess(String txty

sm Panel J
Panel Controller / AllPanel \
Idle
‘Cardld() T ) .\
| I
|
|

— >
Digit() :

NoCard

ref Entry_GivePIN

Code(Cid, PIN)() Code(Cid, PIN)()

Ioop<0,3>)

3 N

1 1 cardout / ‘ cardid(cid)
&g msg("Try Again”)() } AccLevel(m)() H ardout / GivePIN, ~code(cid,pin)

h h

| |

N | l

GivePIN()

OGTS dNI

Digit) [T :
ref | Entry_GivePIN msg(®)/ oneCard
| . | .
i Code(Cid, PIN)() i Code(Cid,PIN)() ﬂ
| |
| | K givePIN / GivePIN, ~code(cid,pin)
Carl ‘V CardOut() \V AccLevel(n)()
| |
alt J | |
msgb)) | msg(ox)0) |
| |
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Model checking continued.... ....

sd Console_PINChange )

Controller Panel
] i sm Panel
w L / AllPanel \
< Idle >
| ref )
Cardid,Digit, "Try again”, msg() . . "
Entry_EstablishAccess("lllegal PIN") NoCard

1

4
o ‘ |
P OK]msgGive newPinyg — * PIN'O cardout / cardid(cid) =
1 GivePIN() H)cardout / GivePIN, “code(cid,pin) T
|
|
ref } Entry_GivePIN P90 S'
nry_Give msg(t)/
; " OneCard (o)"l
Code(Cid, PIN)() !

msg("Give PIN again")() 'fGive PIN again™
GivePIN() ! givePIN / GivePIN, ’\code(cid,pin)/

T
|
|
K
|
|
I
|
|

rerJ Entry_GiveP|N__|ﬂ

Code(Cid, PIN)()

|
S
|

“Wrong PIN"()

alt J [Wrong P|N] msg("Wrong PIN")()

[
— NewCode(CidPIN0 4+ — — — — — — L — — — |
|

( e )
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Harmonizing

T
/ opt i
I
I
I
I

We decide to move CardOut from

EstablishAccess to the end of
PIN_Change

12-Oct-06

sd PINChange

__ACSystem_

ref AC_PIINChanae
I

Idle

)

EstablishAccess ("lllegal PIN")

[PIN OK]
|
|
"Give new PIN") |
o |
ref GivePIN
i "Give PIN again”() i
| |
ref GivePIN
= i
opt | ! [wrong PIN]
\ L "Wrong PIN"() !
N D |
N\, : :
\!\ CardOut() |
| |
( Idle )

INF5150 INFUIT Haugen / Stalen

50

0STS AN



UNIVERSITY
OF OSLO

Verification 2: AccessPoint’s Controller

sd AP_UserAccess )

"Please Enter!"(msg("Please Enter")()
N

Open()

ref | AP_OpenDoor

User Controller Door
} ] ]
( Idle )
Cardld, Digit() ' ' Code()
EstabllshAccess ("IIIegaI
"try again”, msg() P|N") AccLev()
‘
CardOut() } :
k — |
opt | [PIN OK]

sd: User Access vs sm: Controller = OK!

Are we then certain that AccessPoint’s
Controller is perfect?

12-Oct-06

Closed / St

The User opens the door exactly when the timer
expires. door+opened in input port

sm Controller J

[accl

dfter: door/ Lock

><’ Idle
Code / EstabhshAchev( .).CardOut

Opened / StartTimer(door, now+30)

é/( [acclev<=0]/ msg("No Entry")

ev>0] / msg("Please Enter"),Unlock,StartTimer(door, now+10)

bpTimer(door),Lock
Opening

after: door/ Alar

‘ Closing

m
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Verification 3: Detecting default transitions

sm Controller )

* Sequence Diagrams are not
suited to uncover all possible
variants of interaction

o State Machines (JavaFrame or Code / EstablishAccLew(...).CardOut
UML. 2 ) supporte d 5)’ [acclev<=0] / msg("No Entry")
automatic tgcﬁmgues can find >
unwanted signaling L
combinations [acclev>0] / StartTimer(door, now+10),msg("Please Enter"),Unlock S'
Closed / StppTimer(door),Lock %1

o There are several techniques to
evaluate projections of
processes to uncover the
complexity of the software

S

after: door/ ask_closed after: door/ Alarm
Opened / StartTimer(door, now+30L

| Closing
—
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Dialectic Software Development

Software Development is a process of learning
— once you have totally understood the system you are building, it is done
Learning is best achieved through conflict, not harmony
— discussions reveal problematic points
— silence hides critical errors
By applying different perspectives to the system to be designed
— Inconsistencies may appear
— and they must be harmonized
Inconsistencies are not always errors!
— difference of opinion
— difference of understanding
— misunderstanding each other
— aresult of partial knowledge
Reliable systems are those that have already met challenges

0STS ANI
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