§ 4% UNIVERSITY
* 0P 7 oF osLo

Development Methodology

0STS AN

Version 061013

e

L)
Q‘ 12-Oct-06 INF5150 INFUIT Haugen / Stglen 1

20

i

§ £9% UNIVERSITY
2P s oF osLO

What shall we learn in school today?

= Why your java programs fail

— The solution
= thinking in a way corresponding to how your program will work

= Methodology

— Some useful tips

= Dialectics — making conflicts drive the development
— early conflicts are less dangerous
— people with complementary competence is fruitful
— complementary views help see the whole picture

= The need for harmonization

12-Oct-06 INF5150 INFUIT Haugen / Stglen

Z
=
a1
H
a1
o

§ 4% UNIVERSITY
205 oF osLo

Why your normal Java program fails

0STS AN

- or how to think in correspondence with how
the computer works

20

pi

‘ “Z 12-Oct-06 INF5150 INFUIT Haugen / Stglen 3

/\ UNIVERSITY
“¢lW 7 OF osLO

Agreeing on which movie to watch

= A group of persons are going to agree on which movie to
watch this evening

= There is only a small number of movies (less than the
number of persons). One can assume that the decision
can be based on democratic principles: the movie with
most votes win.

= We will use three different ways of communication:

— (half-) duplex two-party telephony (synchronizing
communication)

— conference call (synchronous communication)
— SMS (asynchronous communication)

Z
T
o
*—-}
o
o

)
<t§'\4111
P

W 12-Oct-06 INF5150 INFUIT Haugen / Stglen 4

§ 4% UNIVERSITY
205 oF osLo

Synchronizing communication

msc moviel m persl is the
persl pers2 pers3 master
whatmovie = pers2 and pers3
] are slaves
i iwhatmovie(pz::m = persl cannot
T whatmovie perform anything

A 4

while pers2 and
whatmovie(p3:=m1) per§3 are trying to
e decide for
themselves

‘decide’
tickets(3,m1)

tickets(idnor
_________ ’_I_

l

IS

¥ 1 12-Oct-06 INF5150 INFUIT Haugen / Stalen 5

§45°% UNIVERSITY
205 oF osLo

Synchronous communication

msc movie2 = persl is the
persi pers2 pers3 central
whatmovie = pers2 and pers2
fmovie(pz::mZ) i _movie(m2=:p2) : are co-workers
. movie(pB::ml)/) movie(p3:=m1) = neither of the

<

) persons can do
anything while the
communication
lasts

OGTS dNI

‘decide’

tickets(3,m1)
—>

» (this is informal
MSC since MSC-
2000 have no

f mechanisms for

X 7y 12-Oct-06 INF5150 INFUIT Haugen / Steglen SynChI’OnOUS 6

l

IS

§45°% UNIVERSITY
205 oF osLo

Asynchronous communication

persi pers2 pers3 central
whatmovie . = pers2 and pers2
whatmovie are co-workers
1 movie(p2:=m2) = persl can do
) other kinds of Z
o : T
| movie(p3==m1) work while pers2 &
o
o

T and pers3 decide
their opinions
‘decide’ » pers2 and pers3
ask_tickets(3,m1) can make up their
opinion in parallel

A

tickets(idno)

l

IS

‘) 12-Oct-06 INF5150 INFUIT Haugen / Stalen 7

S §¥% UNIVERSITY
OF OSLO

Threads

SR

Threads are flows of control

— the metaphor is that the threads go through the web of objects like a
thread in the fabric of a shirt that is sewn

Threads are said to be “light weight processes”?!
— threads are not operating system tasks
— threads refer to the same address space (object space)
— threads must be considered concurrent
What is the canonical mental model of threads?
— this is a very hard question, and we shall try and look at this
Are there simple ways to ensure thread-safe programming in Java?
— there is no simple way, but some approaches are safer than others
Threads can be used to enforce priority
— but be conscious about what you can achieve through priority

Z
=
o
H
o
o

12-Oct-06 INF5150 INFUIT Haugen / Stalen 8

2 UNIVERSITY

/# OF OSLO

Threads 1

msc moviel

persl

whatmovie

pers2

whatmovie(p2:=m?

pers3

INF5150 INFUIT Haugen / Stalen

= one thread

* in fact the whole
system is
sequential!

= anybody can
program this in
Java

OGTS dNI

l

- ‘”‘A

%) UNIVERSITY
; OF OSLO

Threads 2

msc movie3

persl pers2

pers3

whatmovie

\ s
rrEr
|

I movie(p3:=m1)

12-Oct-06

INF5150 INFUIT Haugen / Stalen

there are two
Independent threads
of control

In fact there could
be even more since
pers2 and pers3
could have had
other business to
attend to!

as itis, itis a fairly
simple “fork” / “join”
and quite simple to
program

such a local fork and
join is still almost
sequential

10

OGTS dNI

l

aF

4

2 UNIVERSITY

7 OF OSLO

5%

Threads 2 (more)

msc movie3

pers3

12-Oct-06

INF5150 INFUIT Haugen / Stalen

= Problems
— technical
— conceptual

» |f persl following
messages movie
also updates the
count for each
movie, there is a

concurrent update

problem

= \Who are the

threads? Are they

concepts?

11

0STS AN

$£9°% UNIVERSITY
* 0P 7 oF osLo

Threads 3 (JavaFrame / UML / SDL)

msc movie3 = persl, pers2 and
pers2_|Scheduler_pers3 pers3 are all
: ActiveODbject
whatmovie
whatmovie = they are |
StateMachines

- movie(p2:=m2)

= perslis Leader

= pers2,pers3 are
Followers

= There is one (or
‘ddcide’ more Threads)

ask_tickels(3,m1) controlled by

Schedulers

tickets(idno = Schedulers are
| | | | | | hidden for the
{;””‘ , programmer

: movie(p3:=m1l) N

OGTS dNI

>
<

£

20

l

¥) 12-Oct-06 INF5150 INFUIT Haugen / Stglen 12

§ #7% UNIVERSITY

¢ 5 OF OSLO

Object Orientation

* The objects are the performers / executors
» They themselves perform their methods
* |[n Java In fact the Threads are executing the methods

* This means that the same object may be executed from
different Threads, but conceptually being one active
object in itself

Z
T
a1
H
a1
o

<<<<<
Ll

12-Oct-06 INF5150 INFUIT Haugen / Stalen 13

l“\l UNIVERSITY
e OF OSLO

i w
jml 3
d7 rerel =

CCl

Why we make errors with Threads in Java

* You use another Thread to achieve higher speed

— usually wrong, if it is on the same machine, it will slow the
machine down, not speed it up

= You use several Threads, but lose track of them because
they are not associated closely with concepts

— You use several Threads, but your concept of the ActiveObjects
are not associated with them

= You are using a synchronizing approach and believe that
the program is essentially sequential, but alas...

— another programmer does the same, but your Threads interact
without synchronization on some obscure common object

* You know about Thread problems and use synchronized
methods to a large degree
— either you run into deadlock, or very inefficient programs

Z
=
o
*—-}
o
o

<t§'\41:’,7
D

12-Oct-06 INF5150 INFUIT Haugen / Stalen 14

<<<<<
Ll

§ #7% UNIVERSITY

WF . oFosLo

Why use several Threads in Java?

= There are real external stimuli that should be handled according to
Interrupts

— it would be better if all (or many) interrupts could be handled by the
same Thread since Threads consume resources

= There are some parts of the system that requires better priority than
the rest

— Giving priority could give improved performance
= duration of transitions vary considerably
— Certain urgent operations are done in time,

— but priorities should not be used in reasoning about the overall
functionality

* The system is physically distributed over several machines

— Then it is obvious that we need more than one JVM (Java Virtual
Machine)

0STS ANI

12-Oct-06 INF5150 INFUIT Haugen / Stalen 15

|\| UNIVERSITY
o WI /5 OF OSLO

O e

Why UML 2 / JavaFrame is different

* The predominant model of UML 2 State Machines /
JavaFrame is that of telecom:

— concurrency Is an opportunity, not a mere threat
= Execution logic is tied to the programming concepts

= Execution performance discriminates between the
programmers’ level and the execution platform
— Threads are dealt with separately from the functional logic

= High degree of independence implies:
— parallel design possible
— modifiability / flexibility
— early simulation / prototyping
— known validation approaches

* |n short: dependability with less efforts

Z
=
o
*—-}
o
o

<t§'\41:’,7
P

Wi 12-Oct-06 INF5150 INFUIT Haugen / Stglen 16

§ 4% UNIVERSITY
205 oF osLo

Methodology

0STS AN

originally from
Braek&Haugen
"Engineering Real Time Systems” from 1993
made in the SISU project

12-Oct-06 INF5150 INFUIT Haugen / Stglen 17

|\| UNIVERSITY
o {w 7 OF OSLO

L
& e C ol

The goals of the design

» Readable in the deep semantic sense that it supports
collective understanding in a project team. It should
support unambiguous communication among project
members and in-depth understanding by the individual.

= Analyzable in the sense that properties can be derived
and compared with reguirements.

* Implementable in the sense that the described
functionality can be implemented in a way that satisfies
non-functional requirements.

Z
T
o
*—-}
o
o

<t§'\41:’,7
P

Wi 12-Oct-06 INF5150 INFUIT Haugen / Stglen 18

$£9°% UNIVERSITY
205 oF osLo

S-rules on concurrency

= Model independent and parallel behaviors as separate

Processes.

Parallelism is a real world fact

Parallel processes do not interfere with each other

Concurrent processes help to achieve encapsulation and modularity
Concurrency implies a logical separation of substance

Process A

Process B ProcessA*B

OGTS dNI

| O~—0~—0=—0

£

20

l

¥ 1 12-Oct-06 INF5150 INFUIT Haugen / Stalen 19

§ £9% UNIVERSITY
* ¢ s oF osLO

S-rules on structuring

* Interconnections
— Use one channel and/or signal route to carry each independent
and concurrent interaction dialogue.
= system and environment

— For the elements at the periphery of your concern, place them
Inside the system if you wish to describe their behavior in detall

— If you are merely interested in their signal interface, place them in
the environment which means they will not be identified explicitly
in UML

Z
=
o
*—-}
o
o

<t§'\A1:’,1
A

12-Oct-06 INF5150 INFUIT Haugen / Stalen 20

§ #7% UNIVERSITY
« 0¥ 5 oF osLO

S-rules on purpose of composite structures

» Gradual approach to detall

= Units of reuse and repetition;

= Encapsulation of layering;

= Encapsulation of independent adaptation and change;
= Limited scope of process creation and communication;
= Correspondence with the physical system.

OGTS dNI

INF5150 INFUIT Haugen / Stalen 21

SF9% UNIVERSITY
0l oF osLo

i ara

The Actor architecture

/The controlling state
machine — often
performs routing

{2 Actor

o controller ; ActorController
o jnneractars | Actor

—

§a inp;e; /

controller : ActorController

Z
=
o
*—-}
o
o

ukp _
ﬁhe Inner actors — at
SimpleRouterMediator the leaves, these are
or MultiCastMediator state machines, too

ir1[3 :Ei; A————_————______——————————————————————————————\\\-...__-

] -
D“ﬁ inneractors @ Actar [*]

8

A

<t§'\4111
P

12-Oct-06 INF5150 INFUIT Haugen / Stalen 22

> UNIVERSITY
OF OSLO

Does the pattern apply to the Basic Service?

() EpusJ

4 The controlling state
machine — often
performs routing

—

controller : GposController

framuser ; SmsInputMediator = ARGS[O], ARGS[0]

Manual_input : Manualsms

Framjasﬂ:n:nring

H

™1
[
to_pasitioning : MultiCastMediator to_pasitioningZ ; 1dRouting

The Inner actors — at
the leaves, these are

state machines, too
L from cugqullerz

|-
= users ¢ PositionUser [*] %‘

INF5150 INFUIT Haugen / Stglen 23

Z
=
a1
H
a1
o

touser : SmsOutputMediator = ARGS[0],
fram | contraller

SimpleRouterMediator
or MultiCastMediator

/\ UNIVERSITY
“¢lW 7 OF osLO

The purpose of Ports

= Ports represent interfaces
— that are separate from their owner

= Ports may therefore remain while the owner is exchanged

— change implementation during runtime without having to traverse
the whole architecture to update the connectors

= Ports represent the only way to communicate with their
owner
— encapsulation

= Ports are often used for simple routing
— while more complicated routing is done by state machines

= Use Ports always
— even though UML 2 does not require them

Z
=
o
*—-}
o
o

<t§'\4111
P

Wi 12-Oct-06 INF5150 INFUIT Haugen / Stglen 24

§ £9% UNIVERSITY
* ¢ s oF osLO

S-rules on state machines

= state orientation

— Represent what the environment may distinguish as control states
of the process, as states in the process graph.

= decisions

— Critically review all decisions to ensure that they are not
symptoms of undesirable state hiding.

» signal set

— Represent what the environment may distinguish as different
control signals by different signal types

= control flow
— Branch on input signals in states rather than on decisions.

Z
T
o
*—-}
o
o

<t§'\A1:’,1
A

12-Oct-06 INF5150 INFUIT Haugen / Stalen 25

UNIVERSITY
OF OSLO

Does this apply to GposController?

iy EpusEuntrullerJ

@ Initial Bction
”

» State orientation
» Decisions

* Signal set

e Control flow

o3 theState h
@ CollectPositions
Timer [csm.no users=01] o
@ Mo start swrite fil
2]
The smes is now: @ cemwritefile_timer. start Timer(); PosReturn
Studl konto oysteinh o
reg my-ident @2 Write out ople elerment
. .
[csm.counter_users ==_csm.no_users]
@2 Write out end
Sms
[eamenane!es eg")] nurnberofusers
&0 create new User w rmand]
& output (e Sms(Yol message could not be recognized”, sig.getFrom(), "2034 ™), csrm.tousers, csm)
12-Oct-06

INF5150 INFUIT Haugen / Stalen

26

OGTS dNI

§ #7% UNIVERSITY
* ¢ s oF osLO

S-rules for the use of data

= Proper use of data

— non-decisive data

= when the process graph structure is not dependent on the data
values

— context knowledge

» to keep information about the situation and structure of the
environment

— loop control data
= to control loops that are not terminated by specific signals
» shared data
— Introduce special processes to encapsulate shared data.

— Encapsulate data needing independent access in separate
processes.

Z
=
a1
H
a1
o

(

i?*"

=
%\ ‘z 12-Oct-06 INF5150 INFUIT Haugen / Stalen 27

l

staticld \

visualld
lastpos_time
TimerMsg posreq

Does this apply to PositionUser?
< PositionUser valid POS
 xcoord

@ csmuvalidpos=false;csm.xcoord=null;csm. yooord=null; output{new PosRequest{csm.staticld), csm.to_users, csm); wcoord /

UNIVERSITY
OF OSLO

[Rd=Ialne
. G output(new PosReturnicsm.lastpos_time, csm. xcoord, csri. yooord, csm, validpos, csm. staticId, csm.visualld), csm. to_controller, csm);
s "y
3 WaltTimer
PosResult
. £

\

&2 Systarn.err . printin "PositionlUser Wait Tirmer: unexpected PosResult "+new Dated). toString());
Timerisg

0STS ANI

@3 output{new PosReguesticsm,staticld), csm.to_users, csm);
PosRegult

&3 Positioning 7

@2 'WaitPosResult

|| csm.posrequest_timer, start Timer (15000);

GivePos

@ outputinew PosReturnicsm.lastpos_time, csm. xcoord, csmycoord, csm. validpos, csm.staticId, csm. visualld), cerm, to_controller,csm);

TimerMsg

@ Systern.err. printing "Positionlser WaitPosResult: unexpected TimerM:sg "+hnew Date() toString() outputines PosRequest(csmm.staticld),csrm. to_users,csm);

12-Oct-06 INF5150 INFUIT Haugen / Stalen 28

S 7% UNIVERSITY
20/ oF osLO

Dialectic System Development

0STS AN

how to take advantage of conflicts

i

pixie

“Z 12-Oct-06 INF5150 INFUIT Haugen / Stglen 29

The language maturity staircase

SDL Automatic semantics: machine-oriented

MSC Formal Semantics: mathematical notation

Z

TI

. . . ol

UML Semantics: explained understanding cl?1
o

Visio Syntax: given syntax with illustrative add-ons
Doc. figs. | Hlustrations: one notation for each picture, natural language resemblence critical

12-Oct-06 INF5150 INFUIT Haugen / Stglen 30

UNIVERSITY
' OF OSLO

Z
Tl
a1
a1
o

http://www.theregister.co.uk/2006/07/13/zidane_headbutt_outrage/

12-Oct-06 INF5150 INFUIT Haugen / Stalen

° UNIVERSITY
J OF OSLO

Access Control System

Mains Optional network
Control Box
Reader
___,..-F""
_
Exit Suilch] Optienal Second
Raader

Contacts I_I'_:
oniac Lock Release

12-Oct-06 INF5150 INFUIT Haugen / Stalen

32

OGTS dNI

SF9% UNIVERSITY
0l oF osLo

Domain Statement

= Area of concern

— Access control has to do with controlling the access of users to access
zones. Only a user with known identity and correct access right shall be
allowed to enter into an access zone. Other users shall be denied
access.

= Stakeholders

— Users of the system, those responsible for the security of the access
zones.

= Services
— The user will enter an access zone through an access point.
— A supervisor will have the ability to insert new users in the system.

— Users shall be able to change their secret code.

» The authentication of a user shall be established by some means for secret
personal identification (code). The authorisation is based upon the user
identity and access rights associated with the user.

i

12-Oct-06 INF5150 INFUIT Haugen / Stalen 33

Z
=
o
H
o
o

§ 4% UNIVERSITY
205 oF osLo

Service: Change PIN

» Informal specification:

—"Users shall be able to change
their secret code”

e

ChangePIN

aUser

&
=9
| “Z 12-Oct-06 INF5150 INFUIT Haugen / Stalen

34

0STS AN

2 UNIVERSITY

7 OF OSLO

A A
Do

¢

l

Make More Precise

= formalize
— move the description to a more formal language

= refine

— narrow
= add more properties to make it less ambiguous

— supplement
» add new aspects, consider supplementary scenarios

12-Oct-06 INF5150 INFUIT Haugen / Stalen

35

OSTS dNI

2 UNIVERSITY

« V5 oF osLo

£

20

l

Improve Precision: Service and Role orientation

sd PIN_Change_OK

/

User

PINChanging

ChangePIN()

EnterOIdPIN()

OldPIN()

EnterNewPIN()

NewPIN()

OK()

|
|
|
|
&
N
|
|
!
|
|
IN
|
|
|
|
k
|
|
|

N N N

12-Oct-06

formalizing

™~

Consistent? narrowing

™~

service PIN Change

» Users shall be able to change their
personal identification

OGTS dNI

e The User shall be able to choose his new
PIN

 The Card shall be validated by the old
PIN before a new PIN can be given. The
new PIN shall subsequently also be
validated.

supplementing

INF5150 INFUIT Haugen / Stalen 36

UNIVERSITY
OF OSLO

Supplementing

sd PIN_Change)

User PINChanging

Interaction occurrence (use)

ref

ChangePINinvoc

ref ValidatePIN
! !
. break | OIdPIN_NOK() 1
break expression oreakc K !
1]
1 1

J GiveNewPIN

0STS AN

ref
ref J ValidatePIN
break

NewPIN_NOK()

Idle >

o i

continuation

12-Oct-06 INF5150 INFUIT Haugen / Stglen 37

° UNIVERSITY
) OF OSLO

The Access Control Context as UML Class

class name
ACContext
sd sd | [sd J | S)
USerAccess | [PINChange ‘ Upenboor defining interactions
sd J sd J sd
ewUser [EstablishAccess AéivePlN utility interactions

0STS AN

User \
ACSystem Supervisor .
/ composzte Structure
NewUser

12-Oct-06 INF5150 INFUIT Haugen / Stglen 38

UNIVERSITY
OF OSLO

System services

sd New_User) sd UserAccess)

NewUser Supervisor ___ACSystem____ NewUser ___ACSystem_
: : ref AC_NewUser ref AC_UserAccess

1 I

| | | L L

(| Idlei) < Idle | >

: ref I I
| - f - (1] 11}
! —) EstablishAccess © EstablishAccess ("lllegal PIN") —
| ("NotSupervisor") i
i I I : : -I-I
| | | o) [PIN OK] &)
: f . : i o

alt | [Wrong PIN] : | "Please Enter!"() | Coﬂ
| "Sorry"() | ! :ﬁ :

I N U S T '

| [PINOK] cadigg | \;) OpenDoor
| — ! ;
: Il Il | |
! ref GivePIN (Idle)
: [} [} ! I
| Card(Cid, PIN)() | ! | |
S J— |
! ! ! Similarities

(Idle >

12-Oct-06 INF5150 INFUIT Haugen / Stglen 39

UNIVERSITY
OF OSLO

Need for generalization: Entry

sd EstablishAccess(String txt, inst User))

= On what connectors is

I B oy A eeerd EstablishAccess applied?
C__ we) — between the AccessPoint and a
 caw | normal User
oy G ' — between the Console and the
ivePIN)
. . Supervisor user =
—/l 00p<0'3>, "Try Again”() i TI
:\ : ACSystem ol
ref GivePIN o
o

I -
<
CardOut() ¢ I#:l ap: AccessPoint[2..100] c: Console M

i
|

]

| e
: /floor Integer {0..4}
I

|

I

msg(txt)()

I A [(—
i I d . aut: Authorlzer[Z] []
C PIN OK)

INF5150 INFUIT Haugen / Stglen 40

OF OSLO

UNIVERSITY

Harmonizing: Entry, AccessPoint and Console

| ACContext

-ACSystem . Lifeline
-uscriireline
-Supervisor : Lifeline
-NewUser : Lifeline

+UserAccess() : sd
+PINChange() : sd
+NewUser() : sd
#EstablishAccess() : sd
#0penDoor() : sd

#GivePIN() : sd

|

Entry

sd AC_EstablishAccess(String txt))

-Panel : Liteiine
-Controller : Lifeline

+Entry_EstablishAccess() : sd

#Entry GivePIN() : sd

A

AccessPoint

ACSystem

-AccessPoint Lifeline
-Console : Lifeline

-Authunicer ; Lifeline iy

+AC_UserAccess() : sd

+AC_PINChange() : sd

+AC NewUser() : sd

#AC_EstablishAccess() : sd

#AC_OpenDoor() : sd

#AC_ GivePIN() : sd

12-Oct-06

-Door : Lifeline

+AP_UserAccess() : sd

|
Console

+Console NewUser() : sd
+Console PINChange() : sd

INF5150 INFUIT Haugen / Stalen

IR

| V Entry

Authorizer
a (I
Idle
Cardld()& ‘ :)
%} }
. ! |
2% [rel] AC_GivePIN
! Code(Cid, PIN)() !
| f
loop<0,3> J } }
! I
! I
"Try Again”() | AccLevel(m)() |
- ! |
oo ref AC_GivePIN
Code(Cid, PIN)()
CardOut() AccLevel(n)()

|
I
I
i
|
|
I
K
1
msg(txt)() }
|

|
|
|
|
|
t
|
|
I
|
|
|
|
|
|
|

41

UNIVERSITY
OF OSLO

The Entry class hierarchy

[
.

AccessPoint /* inherits Entry */

s

AP_UserAccess

<<redefined>>
Controller

c:Controller

12-Oct-06

Entry

sd
ntry_EstablishAccess

sd
Entry_GivePIN

Controller

Panel

c:Controller

Console /*inherits Entry */

sd

Console_NewUser

sd
Console_PINChange

<<redefined>>
Controller

INF5150 INFUIT Haugen / Stalen

0STS AN

42

1

l

Detailing through commutative decomposition

12-Oct-06

% UNIVERSITY
s OF OSLO

msC PIN_Change
ACsystem decomposed
as AC PIN Change

I;l
(EstablishAccess

(Givc?PIN]

decomposition

msC’AC _PIN_Change
B C

|
AC_EstablishAccess
=3
AC_GivePIN]

reference

MSC EstablishAccess

ACsystem decomposed

as AC_EstablishAccess
—

—>,

" EStablIShACCess
B C

INF5150 INFUIT Haugen / Stalen

OGTS dNI

43

UNIVERSITY
OF OSLO

Change PIN

sd PINChange) sd AC_PINChange)

AccessPoint Authorizer Console
User ___ACsystem___ e —_— —
ref AC_PINChange Decomposition . . Lref Console_PINChange |

' e ') (Idle)

lgit, "Try again”, msg) AC_ EstablishAccess("lllegal PIN")

| | I’elf J
Lef) EstablishAccess ("lllegal PIN") Cardid. D
opt

|
T NewCode(Cid,PI N)[)
|

| [PIN OK] : : . >
i "Give new PIN"() i Oth i i [PIN OKI]Sive new PIN"() T
D | | | A A
ref GivePIN ref AC_GivePIN Digit() g
i/ "Give PIN again"() i : : “Give PIN again“()
! : i : . -
ref GivePIN ref AC_GivePIN Digit0)
. T | i |
: : It | ' "Wrong PIN"()
opt J ! [wrong PIN] alt) ! ! [wrong PIN]
| "Wrong PIN"() | —————:——__e______!_____
:N | else]
i |
|

|
|
|
N
T
|
L

(i = i) C e D

INF5150 INFUIT Haugen / Stalen 44

UNIVERSITY
OF OSLO

Commutative Decomposition

sd AC_EstablishAccess(String txt))
sd EstablishAccess(String txt, inst User)))
Entry Authorizer
-, . - . T
User ACSy_stem eC0mp03|t|0n (Idle >
| i Cardld() : :
1 1 >| |
| |
. de) Digt) [:
i i AC_GivePIN
! Cardid() ! | - |
i N | Code(Cid, PIN)() |
| | | N
| |
ref ; ! ! —
GivePIN loop<0,3> J | | Z
loop<0,3>] N : "Try Again“() !\ AccLevel(m)() ! ol
K Try Again”() ! Digit) | I -
Igi .
T e ref AC_GivePIN 4
. . | CodeCid, PIN)) |
| |
i/ CardOut() i : :
| | t
alt i i CardOut() !/ AccLevel(n)() i
y msg(txt)() ! L L
. | EV a
C e D [mg0 | :
T T | |
—_ —_
| | Idle
< PIN OK : : >
| | | e
: : PIN OK)
| |

12-Oct-06 INF5150 INFUIT Haugen / Stglen 45

UNIVERSITY
OF OSLO

Verification 1: Model checking PIN Change in Panel

sd Console_PINChange) sd Entry_EstablishAccess(String txty

Controller Panel Panel Controller

|ref)

Cardid,Digit, “Try again”, msg()

Entry EstablishAccess("lllegal PIN")

(tdle > Cardid() C \ e

‘ l
— }

ref Entry_GivePIN

Code(Cid, PIN)()

Code(Cid, PIN)()

(Idle

12-Oct-06

INF5150 INFUIT Haugen / Stalen

| |
| o
| | : ,
T [Ioop<0,3>) ! ‘ =
t) . | |
op J [PlN‘ OK] msg("Give new PIN")() “'lee new PIN"() "Try Again"() } msg("Try Again")() } AccLevel(m)() %
[A1 K K
! GivePIN() i ! GivePIN() ‘
| | ! !
: : . 1 =
- . igi .
ref Entry_GivePIN Digit) ref Entry_GivePIN Coﬂ
L Code(Cid, PINY) ; i Code(Cid, PIN)() i Code(Cid,PIN)()
} msg("Give PIN again”)() 'fGive PIN again”() } }
! GivePIN(| Cardout() L Cardout() L AccLevel(n)()
! - ” Digit 1 |
feff Entry_leePIN__,& alt_ | |
‘ Code(Cid, PIN)() | msg(txt)) L msg(txt)() 1
D | ! ‘
alt [wrong PIN] msg("wrong PIN")() | "Wrong PIN"(C ‘ Idle ‘)
1 | | | |
| NewCode(CidPIND - — — — — — R I e — —
PIN OK
| 3 C |

° UNIVERSITY
) OF OSLO

Panel: UML State Machine, GivePIN as a method

sm Panel)/ AllPanel \
.\

NoCard
Z
cardout / cardid(cid) L
- <H>cardout / GivePIN, ~code(cid,pin) g'
o1
o
msg(t)/
g OneCard

\ givePIN / GivePIN, "code(cid,piny

12-Oct-06 INF5150 INFUIT Haugen / Stglen 47

UNIVERSITY
OF OSLO

Model checking continued....

sd Entry_EstablishAccess(String txty

sm Panel J
Panel Controller / AllPanel \
Idle
‘Cardld() T) .\
| I
|
|

— >
Digit() :

NoCard

ref Entry_GivePIN

Code(Cid, PIN)() Code(Cid, PIN)()

Ioop<0,3>)

3 N

1 1 cardout / ‘ cardid(cid)
&g msg("Try Again”)() } AccLevel(m)() H ardout / GivePIN, ~code(cid,pin)

h h

| |

N | l

GivePIN()

OGTS dNI

Digit) [T :
ref | Entry_GivePIN msg(®)/ oneCard
| . | .
i Code(Cid, PIN)() i Code(Cid,PIN)() ﬂ
| |
| | K givePIN / GivePIN, ~code(cid,pin)
Carl ‘V CardOut() \V AccLevel(n)()
| |
alt J | |
msgb)) | msg(ox)0) |
| |

12-Oct-06 INF5150 INFUIT Haugen / Stglen 48

UNIVERSITY
OF OSLO

Model checking continued....

sd Console_PINChange)

Controller Panel
] i sm Panel
w L / AllPanel \
< Idle >
| ref)
Cardid,Digit, "Try again”, msg() . . "
Entry_EstablishAccess("lllegal PIN") NoCard

1

4
o ‘ |
P OK]msgGive newPinyg — * PIN'O cardout / cardid(cid) =
1 GivePIN() H)cardout / GivePIN, “code(cid,pin) T
|
|
ref } Entry_GivePIN P90 S'
nry_Give msg(t)/
; " OneCard (o)"l
Code(Cid, PIN)() !

msg("Give PIN again")() 'fGive PIN again™
GivePIN() ! givePIN / GivePIN, ’\code(cid,pin)/

T
|
|
K
|
|
I
|
|

rerJ Entry_GiveP|N__|ﬂ

Code(Cid, PIN)()

|
S
|

“Wrong PIN"()

alt J [Wrong P|N] msg("Wrong PIN")()

[
— NewCode(CidPIN0 4+ — — — — — — L — — — |
|

(e)

12-Oct-06 INF5150 INFUIT Haugen / Stglen 49

UNIVERSITY
OF OSLO

Harmonizing

T
/ opt i
I
I
I
I

We decide to move CardOut from

EstablishAccess to the end of
PIN_Change

12-Oct-06

sd PINChange

__ACSystem_

ref AC_PIINChanae
I

Idle

)

EstablishAccess ("lllegal PIN")

[PIN OK]
|
|
"Give new PIN") |
o |
ref GivePIN
i "Give PIN again”() i
| |
ref GivePIN
= i
opt | ! [wrong PIN]
\ L "Wrong PIN"() !
N D |
N\, : :
\!\ CardOut() |
| |
(Idle)

INF5150 INFUIT Haugen / Stalen

50

0STS AN

UNIVERSITY
OF OSLO

Verification 2: AccessPoint’s Controller

sd AP_UserAccess)

"Please Enter!"(msg("Please Enter")()
N

Open()

ref | AP_OpenDoor

User Controller Door
}]]
(Idle)
Cardld, Digit() ' ' Code()
EstabllshAccess ("IIIegaI
"try again”, msg() P|N") AccLev()
‘
CardOut() } :
k — |
opt | [PIN OK]

sd: User Access vs sm: Controller = OK!

Are we then certain that AccessPoint’s
Controller is perfect?

12-Oct-06

Closed / St

The User opens the door exactly when the timer
expires. door+opened in input port

sm Controller J

[accl

dfter: door/ Lock

><’ Idle
Code / EstabhshAchev(.).CardOut

Opened / StartTimer(door, now+30)

é/([acclev<=0]/ msg("No Entry")

ev>0] / msg("Please Enter"),Unlock,StartTimer(door, now+10)

bpTimer(door),Lock
Opening

after: door/ Alar

‘ Closing

m

INF5150 INFUIT Haugen / Stalen

5

1

OSTS dNI

Verification 3: Detecting default transitions

sm Controller)

* Sequence Diagrams are not
suited to uncover all possible
variants of interaction

o State Machines (JavaFrame or Code / EstablishAccLew(...).CardOut
UML. 2) supporte d 5)’ [acclev<=0] / msg("No Entry")
automatic tgcﬁmgues can find >
unwanted signaling L
combinations [acclev>0] / StartTimer(door, now+10),msg("Please Enter"),Unlock S'
Closed / StppTimer(door),Lock %1

o There are several techniques to
evaluate projections of
processes to uncover the
complexity of the software

S

after: door/ ask_closed after: door/ Alarm
Opened / StartTimer(door, now+30L

| Closing
—

12-Oct-06 INF5150 INFUIT Haugen / Stglen 52

5
Ao OF >
o |’”

_| |z
Z) I

UNIVERSITY
OF OSLO

ST W

Dialectic Software Development

Software Development is a process of learning
— once you have totally understood the system you are building, it is done
Learning is best achieved through conflict, not harmony
— discussions reveal problematic points
— silence hides critical errors
By applying different perspectives to the system to be designed
— Inconsistencies may appear
— and they must be harmonized
Inconsistencies are not always errors!
— difference of opinion
— difference of understanding
— misunderstanding each other
— aresult of partial knowledge
Reliable systems are those that have already met challenges

0STS ANI

12-Oct-06 INF5150 INFUIT Haugen / Stglen 53

	Development Methodology
	What shall we learn in school today?
	Why your normal Java program fails
	Agreeing on which movie to watch
	Synchronizing communication
	Synchronous communication
	Asynchronous communication
	Threads
	Threads 1
	Threads 2
	Threads 2 (more)
	Threads 3 (JavaFrame / UML / SDL)
	Object Orientation
	Why we make errors with Threads in Java
	Why use several Threads in Java?
	Why UML 2 / JavaFrame is different
	Methodology
	The goals of the design
	S-rules on concurrency
	S-rules on structuring
	S-rules on purpose of composite structures
	The Actor architecture
	Does the pattern apply to the Basic Service?
	The purpose of Ports
	S-rules on state machines
	Does this apply to GposController?
	S-rules for the use of data
	Does this apply to PositionUser?
	Dialectic System Development
	The language maturity staircase
	Access Control System
	Domain Statement
	Service: Change PIN
	Make More Precise
	Improve Precision: Service and Role orientation
	Supplementing
	The Access Control Context as UML Class
	System services
	Need for generalization: Entry
	Harmonizing: Entry, AccessPoint and Console
	The Entry class hierarchy
	Detailing through commutative decomposition
	Change PIN
	Commutative Decomposition
	Verification 1: Model checking PIN Change in Panel
	Panel: UML State Machine, GivePIN as a method
	Model checking continued....
	Model checking continued....
	Harmonizing
	Verification 2: AccessPoint’s Controller
	Verification 3: Detecting default transitions
	Dialectic Software Development

