
ICT

Refinement – formal design with 
sequence diagrams

Ketil Stølen
SINTEF & University of Oslo

September 21, 2007



ICT

Overview

Obligatory Exercise No. 1 
Motivation

How can we incrementally develop UML specifications

Requirements to STAIRS
What should we require from a stepwise method for developing 
UML specifications

Explanation through an example
A Dinner Restaurant

Refinement
Comparison with traditional pre-post paradigm



ICT

Obligatory Exercise No. 1

Should be solved individually by each student
Will be made available today
Refinement exam from last year

October 15, 9.00 AM is the HARD deadline

October 19: Walkthrough of Oblig 1 



ICT

Motivation

Exploit classical theory of refinement in a practical UML 
setting

From theory to practice, and not the other way around

Briefly summarized: we aim to explain how classical 
theory of refinement can be applied to refine specifications 
expressed with the help of sequence diagrams 
Sequence diagrams can be used to capture the meaning 
of other UML description techniques for behavior
By defining refinement for sequence diagrams we 
therefore implicitly define refinement for UML



ICT

Requirements to STAIRS

Should allow specification of potential behavior
Support for under-specification

Should allow specification of mandatory behavior
Support for information hiding (inherent non-determinism, 
unpredictability)

Should allow specification of negative behavior in addition 
to positive behavior

Support for threat modeling

Should capture the notion of refinement
Should formalize incremental development
Should support compositional analysis, verification and 
testing



ICT

Sequence diagram

sd S
L1 L2

x

message

instance-
line component

input 
event

?x

output 
event

!x



ICT

Weak sequencing

sd W
L1 L2

x

y

<!x,?x,!y,?y>
<!x,!y,?x,?y>



ICT

Traces

<e1, e2, e3, e4, e4, e1, e2, e5, ……………>

Traces are used to capture executions (behaviors) semantically
Within the field of formal methods there are many variants of traces
In STAIRS traces are sequences of events 

An event represent either the transmission or reception of messages
?m - reception of message m
!m - transmission of message m

Events are instantaneous
A trace may be finite 

termination, deadlock, infinite waiting, crash
A trace may also be infinite

infinite loop, intended non termination



ICT

Example 

A B C
a
b

c
d

sd Ex

<!a, ?a, !b, ?b, !c, ?c, !d, ?d> 
<!a, ?a, !b, ?b, !c, !d, ?c, ?d> 
<!a, ?a, !b, ?b, !d, !c, ?c, ?d> 
<!a, ?a, !b, !c, ?b, ?c, !d, ?d> 
<!a, ?a, !b, !c, ?b, !d, ?c, ?d> 
<!a, ?a, !b, !c, ?c, ?b, !d, ?d>

This sequence diagram has six traces:



ICT

Alternative 

sd A
L1 L2

x

y

alt



ICT

Parallel execution

sd P
L1 L2

x

y

par



ICT

Interaction overview diagram
sd IOD

ref S

ref IO ref W

ref IO ref W

S seq (IO par W) seq (IO alt W)



ICT

Dinner
sd Dinner

sd Entree

ref Vegetarian

ref Beef

ref Pork

sd SideOrder

ref Baked Potato

ref Rice

ref Frites

ref Salad

a Salad as a starter

then a main course 
consisting of an Entree 

and SideOrder in parallel

choices
choices



ICT

Some potential positive traces of 
Beef

sd Beef
Cook Stove Refrigerator

main dish please

turn on heat

fetch_meat()

fetch_meat():sirloin

heat is adequate

put on grill (sirloin)

fetch_meat()

fetch_meat():sirloin
main dish:sirloin



ICT

STAIRS semantics: simple case

Each positive execution is represented by a trace
Each negative execution is represented by a trace
The semantics of a sequence diagram is a pair of sets of 
traces (Positive, Negative)

All other traces over the actual alphabet of events are 
inconclusive

Positive

Negative

Inconclusive



ICT

Potential negative Beef experiences

negative traces

Burned Sirloin

Beef with French fries

Turkey entree

Forgotten Sirloin

Positive traces

Negative traces

Inconclusive traces

sd Beef
Cook Stove Refrigerator

main dish please

turn on heat

fetch_meat()

fetch_meat():sirloin

heat is adequate

put on grill (sirloin)

neg smell of burned meat

fetch_meat()

fetch_meat():sirloin
main dish:sirloin



Guarantee with respect to 
the state at the moment of
termination 

Pre-post specifications
Pre-post specifications are based on the assumption-guarantee paradigm

Integer division

var dividend, divisor, quotient, rest : Nat  

pre divisor

post ( dividend = (quotient’ * divisor) + rest’ ) &

rest’ < divisor 

≠ 0
Assumption about the state at the 
moment the execution is initiated

ICT



ICT

Semantics of pre-post specifications

pre false 
initially 

pre true 
initially

no 
constraints 
on state at 

termination  
post false at 
termination

post true at 
termination

Legal 
system

behavior

Illegal
system

behavior

Legal, 
but 
arbitrary
behavior



ICT

Comparing STAIRS with pre-post

pre=false pre=true assumption

post=true   positive

post=false   negative

inconclusive guarantee



ICT

Refinement in pre-post

pre sann i 
starttilstand

post sann i det øyeblikk
operasjonen terminerer

pre false 
initially 

pre true 
initially

no 
constraint 
on state at 

termination  post false at 
termination

post true at 
termination

Strengthening postWeakening pre



ICT

STAIRS: supplementing

Supplementing involves reducing the set of inconclusive 
traces by redefining inconclusive traces as either positive 
or negative
Positive trace remains positive
Negative trace remains negative

Burned Sirloin

Beef with French fries

Turkey entree

Forgotten Sirloin

Positive traces

Negative traces

Inconclusive traces

Forgotten Sirloin
Burned Sirloin

Beef with FF
Turkey entree

supplementing



ICT

Supplementing in pre-post

pre=false pre=true

post=true   positive

post=false   negative

inconclusive

weakening the assumption

assumption

guarantee



ICT

STAIRS: narrowing 

Narrowing involves reducing the set of positive traces by 
redefining them as negative
Inconclusive traces remain inconclusive
Negative traces remain negative

Positive traces
in sets of traces

Negative traces

Inconclusive traces

Beef

narrowing
Vegetarian

Beef

Pork Vegetarian Pork

Indian Restaurant



ICT

Narrowing in pre-post

pre=false pre=true

post=true   positive

post=false   negative

inconclusive

assumption

strengthening the
guarantee

guarantee



ICT

Indirect definition: Refinement in STAIRS

A sequence diagram B is a general refinement of a 
sequence diagram A if

A and B are semantically identical
B can be obtained from A by supplementing
B can be obtained from A by narrowing
B can be obtained from A by a finite number of steps

A -> C1 -> C2 -> …. ->Cn->B
each of which is either a supplementing or a narrowing



ICT

Is B a refinement of A?

S T

sd B

e

b
c

S T

sd A

e

b
c



ICT

Is B a refinement of A?

S T

sd B

e

c
b

S T

sd A

e

b
c



ICT

Is B a refinement of A?

S T

sd B

e

b

c

k

d

f

alt

S T

sd A

e

b
c



ICT

Is B a refinement A?

S T

sd B

e

b

c

k

d

f

S T

sd A

e

b
c



ICT

Is B a refinement of A?

S T

sd A

e

b
c

S T

sd B

e

b



ICT

DIRECT DEFINITION: Refinement in 
STAIRS

A sequence diagram B is a refinement of a sequence 
diagram A if

every trace classified as negative by A is also classified as 
negative by B
every trace classified as positive by A is classified as either 
positive or negative by B 



ICT

Refinement in STAIRS

Positive

Negative

InconclusiveSupplementing Narrowing

An interaction obligation o'=(p',n') is a refinement of an interaction
obligation o=(p,n) iff

n      n'
p      p'Un'
⊆
⊆



ICT

Underspecification and non-determinism

Underspecification: Several alternative behaviours are 
considered equivalent (serve the same purpose).
Inherent non-determinism: Alternative behaviours that
must all be possible for the implementation.

These two should be described differently!



ICT

The need for both alt and xalt

Potential non-determinism captured by alt allows 
abstraction and inessential non-determinism

Under-specification
Non-critical design decisions may be postponed

Mandatory non-determinism captured by xalt
characterizes non-determinism that must be reflected in 
every correct implementation 

Makes it possible to specify games
Important in relation to security
Also helpful as a means of abstraction



ICT

Restaurant example with both alt and 
xalt

sd Dinner-2

sd Entree

ref Vegetarian

ref Beef ref Pork

sd SideOrder

ref Baked Potato

ref Rice

ref Frites

alt

ref Salad

xalt alt

Entree menus must 
have the choice of 
Vegetarian or Meat

Meat may be either Beef or 
Pork, but menus need not 

have both choices



ICT

STAIRS
Positive

Negative

Inconclusive
Positive

Negative

Inconclusive
Positive

Negative

Inconclusive

xalt
Positive

Negative

Inconclusive

Positive

Negative

Inconclusive
Positive

Negative

Inconclusive



ICT

alt vs xalt

Assume
[[ d1 ]] = {(p1,n1)} [[ d2 ]] = {(p2,n2)}

alt specifies potential behaviour:
[[ d1 alt d2 ]]
= [[ d1 ]] + [[ d2 ]]
= {(p1 U p2, n1 U n2)}

xalt specifies mandatory behaviour:
[[ d1 xalt d2 ]]
= [[ d1 ]] U [[ d2 ]]
= {(p1,n1)} U {(p2,n2)}

P1 U P2

N1 U N2

I

P1

N1

I1

P2

N2

I2



ICT

Example: Network communication

cs C

A :sen d er S :n etw o rk B :rece iver

cs  S
N 1:N

N 2:N

N 4:N

N 3:N
G :N



ICT

alt vs xalt

A->G->N1->B

Everything else

A->G->N2->N3->B
A->G->N2->N4->B

Everything else

S:network
sd S_Comm

N1:N N2:N N3:N
m

m

m

N4:N

m m

G:N

m

m

A:sender B:receiver

m

alt

xalt



ICT

Mandatory requirements STAIRS

Haugen, Husa, Runde, Stølen: STAIRS towards formal 
design with sequence diagrams, 2005. SoSyM, Springer.
Runde, Haugen, Stølen: The Pragmatics of STAIRS, 
2006. Springer-Verlag. LNCS 4111. 

NOTE:
Next Tuesday: Group Session Cancelled
Next Friday: First lecture on security analysis

Next Lecture on STAIRS: October 5.


