
INF5150 INFUIT Haugen / Stølen 1

IN
F 5150

The pragmatics of STAIRS

Paper by Ragnhild Kobro Runde, Øystein 
Haugen and Ketil Stølen

October 5, 2007



INF5150 INFUIT Haugen / Stølen 2

IN
F 5150

Today’s topics

� Explain the practical relevance of STAIRS
� Give guidelines on

– the use of STAIRS operators
– refinement

� Illustrated by a running example
� Present some new operators and refinement types
� Some repetition

� The paper can be found on the syllabus/achievement
page for INF5150
– note: updated on Tuesday!



INF5150 INFUIT Haugen / Stølen 3

IN
F 5150

Weak sequencing of trace sets (1)

� s1≿s2 denotes the set of all traces that may be 
constructed by selecting one trace t1 from s1 and one
trace t2 from s2 and combining them in such a way that for 
each lifeline, the events from t1 comes before the events
from t2.

� Note: if s1 or s2 is empty then s1≿s2 is also empty
� Remember: if the message hello is sent from l1 to l2, then

the event !hello occurs on l1 and ?hello occurs on l2



INF5150 INFUIT Haugen / Stølen 4

IN
F 5150

Weak sequencing of trace sets (2)

<!(h,A,B),?(h,A,B),!(g,A,B),?(g,A,B)>

<!(h,A,B),!(g,A,B),?(h,A,B),?(g,A,B)>

<!(h,A,B),?(h,A,B)> ≳

=

<!(g,A,B),?(g,A,B)>

s1 s2

Red events occur on Alice, 
blue events on Bob

s1 ≳ s2 is the set of 
positive traces for the 

diagram



INF5150 INFUIT Haugen / Stølen 5

IN
F 5150

Weak sequencing of interaction obligations

� (p1,n1)≿(p2,n2)≝ (p1≿p2 , (n1≿p2)∪(n1≿n2)∪(p1≿n2))

� Traces composed exclusively by positive traces become
positive

� Traces composed with at least one negative trace 
become negative



INF5150 INFUIT Haugen / Stølen 6

IN
F 5150

Formal semantics of seq

� [[d1 seq d2]]≝ {o1≿o2 ∣ o1∈[[d1]]∧o2∈[[d2]]}

� seq is the implicit composition operator
� oi is shorthand for (pi, ni)
� Note: For better readability we give the binary versions of

the operators in this presentation. N-ary versions are
used in the paper.



INF5150 INFUIT Haugen / Stølen 7

IN
F 5150

The pragmatics of creating interactions



INF5150 INFUIT Haugen / Stølen 8

IN
F 5150

Example: an appointment system

� A system for booking appointments used by e.g. dentists

� Functionality:
– MakeAppointment: The client may ask for an appointment
– CancelAppointment: The client may cancel an appointment
– Payment: The system may send an invoice message asking the

client to pay for the previous or an unused appointment.

� The interactions specifying the system will be developed
in a stepwise manner

� Steps will be shown to be valid refinement steps



INF5150 INFUIT Haugen / Stølen 9

IN
F 5150

xalt vs alt (1): CancelAppointment

� This specification has two
positive traces

� Whether reception of
appointmentCancelled() 
occurs before or after
sending of
appointmentSuggestion(...) 
is not important

� Underspecification due to 
weak sequencing



INF5150 INFUIT Haugen / Stølen 10

IN
F 5150

xalt vs alt (2): MakeAppointment

� May ask for either a 
specific date or a specific
hour of the day (e.g. in the
lunch break)

� The system is not 
required to offer both
alternatives

� Underspecification
expressed by the alt 
operator



INF5150 INFUIT Haugen / Stølen 11

IN
F 5150

xalt vs alt (3): DecideAppTime

� The system must be able
to handle both yes() and 
no() as reply messages
from the client

� This is not
underspecification

� Therefore the alternatives 
are expressed by the xalt
operator



INF5150 INFUIT Haugen / Stølen 12

IN
F 5150

xalt vs alt (4): CancelAppointment

� The condition for 
choosing errorMessage() 
or 
appointmentCancelled() is 
not shown

� Both alternatives should
be possible

� The choice is made by the
system



INF5150 INFUIT Haugen / Stølen 13

IN
F 5150

xalt vs alt (5)

� A third use of xalt: to specify inherent nondeterminism
– for example when specifying a coin toss

� The crucial question when specifying alternatives: Do 
these alternatives represent similar traces in the sense
that implementing only one is sufficient?
– if yes, use alt
– otherwise, use xalt



INF5150 INFUIT Haugen / Stølen 14

IN
F 5150

Formal semantics of alt and xalt

� [[d1 alt d2]]≝ {o1⊎o2 ∣ o1∈[[d1]]∧o2∈[[d2]]}, where
� (p1,n1) ⊎ (p2,n2) ≝ (p1∪p2, n1∪n2)

� [[d1 xalt d2]]≝ [[d1]] ∪ [[d2]]



INF5150 INFUIT Haugen / Stølen 15

IN
F 5150

opt and skip

� [[opt d]]≝ [[skip alt d]]

� [[skip]]≝ {({<>},∅)}
– A single interaction obligation where only the empty trace <> is 

positive and the set of negative traces is empty



INF5150 INFUIT Haugen / Stølen 16

IN
F 5150

Informal illustration of MakeAppointment



INF5150 INFUIT Haugen / Stølen 17

IN
F 5150

The pragmatics of alt vs xalt

� Use alt to specify alternatives that represent similar
traces, i.e. to model
– underspecification

� Use xalt to specify alternatives that must all be present in 
an implementation, i.e. to model
– inherent nondeterminism, as in the specification of a coin toss
– alternative traces due to different inputs that the system must be 

able to handle (as in DecideAppTime)
– alternative traces where the conditions for these being positive 

are abstracted away (as in CancelAppointment on slide 12)



INF5150 INFUIT Haugen / Stølen 18

IN
F 5150

Guards (1)

� Guards may be used to 
express conditions for 
choosing between
alternatives

� Here: an error message is 
sent if the client tries to 
cancel an appointment
less than 24 hours before
it is due



INF5150 INFUIT Haugen / Stølen 19

IN
F 5150

Guards (2)

� Semantically, a guard is represented by a special check-
event

� The check-event ensures that for each operand to alt/xalt, 
its traces (including the check-event) become negative if
the guard is false
– otherwise they remain postive or negative as before

� Therefore the guard must be true in all possible situations
in which the specified traces are positive

� An alt/xalt operand without a guard can be interpreted as 
having the guard ⊤ (always true)

� More than one guard may be true at a time



INF5150 INFUIT Haugen / Stølen 20

IN
F 5150

The pragmatics of guards

� Use guards in an alt/xalt construct to constrain the
situations in which the different alternatives are positive

� Always make sure that for each alternative, the guard is 
sufficiently general to capture all possible situations in 
which the described traces are positive

� In an alt-construct, make sure that the guards are
exhaustive. If doing nothing is valid, specify this by using
the empty diagram, skip
– This is in order to avoid confusion with the UML standard



INF5150 INFUIT Haugen / Stølen 21

IN
F 5150

Negative behavior

� veto, refuse and assert
introduce negative 
behavior

appointmentMade() may not occur
here (veto=neg)

noAppointment() may not occur
instead of appointmentMade() here

noAppointment () is the only
message that may occur here

From 0 to 
4 iterations
(with seq
between)



INF5150 INFUIT Haugen / Stølen 22

IN
F 5150

refuse

� [[refuse d]]≝ {(∅,p∪n) ∣ (p,n)∈[[d]]}

� All interaction obligations in [[refuse d]] have empty
positive sets

� This means that all interaction obligations in
[[d1 seq (refuse d2)]] have empty positive sets
– and the same applies to [[(refuse d1) seq d2]]



INF5150 INFUIT Haugen / Stølen 23

IN
F 5150

veto

� [[veto d]]≝ [[skip alt (refuse d)]]

� ... which means that
[[veto d]] = {({<>},p∪n) ∣ (p∪n)∈[[d]]}

� veto and neg have identical semantics



INF5150 INFUIT Haugen / Stølen 24

IN
F 5150

veto or refuse?

� Should doing nothing be 
possible in the otherwise
negative situation?
– If yes, use veto
– If no, use refuse

It is OK to do nothing between no() 
and appointmentSuggestion(time)

It is not OK to do nothing after yes()



INF5150 INFUIT Haugen / Stølen 25

IN
F 5150

assert (1)

� By using assert, all inconclusive traces are redefined as 
negative

� This ensures that for each interaction obligation, at least
one of its positive traces will be implemented in the final 
implementation

� [[assert d]]≝ {(p,n∪(ℋ\p )) ∣ (p,n)∈[[d]]}



INF5150 INFUIT Haugen / Stølen 26

IN
F 5150

assert (2)

Sending noAppointment() is 
the only acceptable
response to the no() 
message at this point



INF5150 INFUIT Haugen / Stølen 27

IN
F 5150

The pragmatics of negation

� To effectively constrain the implementation, the
specification should include a reasonable set of negative 
traces

� Use refuse when specifying that one of the alternatives in 
an alt-construct represents negative traces

� Use veto when the empty trace (i.e. doing nothing) should
be positive, as when specifying a negative message in an 
otherwise positive scenario

� Use assert on an interaction fragment when all positive 
traces for that fragment have been described



INF5150 INFUIT Haugen / Stølen 28

IN
F 5150

The use of seq

� A trace is not necessarily
negative even if a prefix of it is 
negative

� The total trace must be 
considered when categorizing it 
as positive, negative or 
inconclusive

cancel(appointment) followed by 
appointmentCancelled() followed by 

nothing is negative

cancel(appointment) followed by 
appointmentCancelled() 

followed by the positive traces 
of Payment is positive



INF5150 INFUIT Haugen / Stølen 29

IN
F 5150

The pragmatics of weak sequencing

� Be aware that by weak sequencing
– a positive sub-trace followed by a positive sub-trace is positive
– a positive sub-trace followed by a negative sub-trace is negative
– a negative sub-trace followed by a positive sub-trace is negative
– a negative sub-trace followed by a negative sub-trace is negative
– the remaining trace combinations are inconclusive

� Remember the definition:
(p1,n1)≿(p2,n2)≝ (p1≿p2 , (n1≿p2)∪(n1≿n2)∪(p1≿n2))



INF5150 INFUIT Haugen / Stølen 30

IN
F 5150

The pragmatics of refining interactions



INF5150 INFUIT Haugen / Stølen 31

IN
F 5150

The use of supplementing

� Inconclusive trace are recategorized as either
positive or negative (for an interaction obligation)

� New situations are considered
– adding fault tolerance
– new user requirements
– ...

� Typically used in early phases



INF5150 INFUIT Haugen / Stølen 32

IN
F 5150

Supplementing of interaction obligations

� (p,n) ⇝s (p’,n’) ≝ p⊆p’∧ n⊆n’

Positive

Negative

InconclusiveSupplementing



INF5150 INFUIT Haugen / Stølen 33

IN
F 5150

Supplementing of specifications

� d⇝s d’ ≝∀o∈[[d]]:∃o’∈[[d’]]: o⇝s o’

p1

n1

H \(p1∪n1)[[d]]:

p2

n2

H \(p2∪n2)

p1
'

n1
'

H \(p1
'∪n1

')

p2
'

n2
'

H \(p2
'∪n2

')

p3
'

n3
'

H \(p3
'∪n3

')

s s s

[[d’]]:



INF5150 INFUIT Haugen / Stølen 34

IN
F 5150

Example of supplementing



INF5150 INFUIT Haugen / Stølen 35

IN
F 5150

The pragmatics of supplementing

� Use supplementing to add positive or negative traces to 
the specification

� When supplementing, all of the original positive traces 
must remain positive, and all of the original negative 
traces must remain negative

� Do not use supplementing on the operand of an assert
– no traces are inconclusive in the operand



INF5150 INFUIT Haugen / Stølen 36

IN
F 5150

Narrowing

� Reduce underspecification by redefining positive traces 
as negative

� For example adding guards, or replacing a guard with a 
stronger one
– traces where the guard is false become negative

� (p,n) ⇝n (p’,n’) ≝ p’⊆p∧ n’=n∪(p\p’)
� d⇝n d’ ≝∀o∈[[d]]:∃o’∈[[d’]]: o⇝n o’

Positive

Negative

Inconclusive Narrowing



INF5150 INFUIT Haugen / Stølen 37

IN
F 5150

Example of narrowing

For each operand, traces where the
guard is false become negative



INF5150 INFUIT Haugen / Stølen 38

IN
F 5150

The pragmatics of narrowing

� Use narrowing to remove underspecification by redefining 
postive traces as negative

� In cases of narrowing, all of the original negative traces 
must remain negative

� Guards may be added to an alt-construct as a legal 
narrowing step

� Guards may be added to an xalt-construct as a legal 
narrowing step

� Guards may be narrowed, i.e. the refined condition must 
imply the original one



INF5150 INFUIT Haugen / Stølen 39

IN
F 5150

The use of detailing

� Reducing the level of abstraction by structural
decomposition
– One or more lifelines are decomposed

� The positive and the negative traces are the same, 
except that
– internal communication is hidden at the abstract level
– events occuring on a composed lifeline at the abstract level occur

instead on one of the component lifelines



INF5150 INFUIT Haugen / Stølen 40

IN
F 5150

Example of detailing
Note that a UML principle

has been broken here.

Internal
communication

Components of
AppSystem



INF5150 INFUIT Haugen / Stølen 41

IN
F 5150

Detailing

� L is a mapping that defines the translation from concrete
to abstract lifelines
– L={Client↦Client, Billing↦AppSystem, Calendar↦AppSystem}
– This implies that Billing and Calendar are components of

AppSystem
� subst(t,L) is a function that substitutes lifelines in the trace 

t according to L
� E is a set of abstract events

– Necessary to allow messages that an abstract lifeline sends to 
itself to be visible in the abstract diagram

� abstr(s,L,E) is an abstraction function that transforms a set
of concrete traces s into a set of abstract traces
– by removing all internal events (w.r.t. L) that are not in E



INF5150 INFUIT Haugen / Stølen 42

IN
F 5150

Formal definition of detailing

� (p,n) ⇝c
L,E (p’,n’) ≝ p=abstr(p’,L,E)∧ n=abstr(n’,L,E)

� d⇝c
L,E d’ ≝∀o∈[[d]]:∃o’∈[[d’]]: o⇝c

L,E o’

Internal events not 
visible at the
abstract level



INF5150 INFUIT Haugen / Stølen 43

IN
F 5150

The pragmatics of detailing

� Use detailing to increase the level of granularity of the
specification by decomposing lifelines

� When detailing, document the decomposition by creating
a mapping L from the concrete to the abstract lifelines

� When detailing, make sure that the refined traces are
equal to the original ones when abstracting away internal
communication and taking the lifeline mapping into
account



INF5150 INFUIT Haugen / Stølen 44

IN
F 5150

The use of general refinement

� A combination of supplementing, narrowing and detailing
– (not necessarily all three)

� Allows all positive traces to become negative, while
previosly inconclusive traces become positive

� To ensure that a trace must be present in the final 
implementation we need an interaction obligation where
all other traces are negative



INF5150 INFUIT Haugen / Stølen 45

IN
F 5150

Example of general refinement

supplementing

narrowing

narrowing

Note: According to 
UML, the guards are
on the wrong lifeline



INF5150 INFUIT Haugen / Stølen 46

IN
F 5150

General refinement (of sets of interaction obligations)
� d⇝ d’ ≝∀o∈[[d]]:∃o’∈[[d’]]: o⇝ o’
� d’ is a general refinement of d if

– for every interaction obligation o in [[d]] there is at least one
interaction obligation o’ in [[d’]] such that o’ is a general 
refinement of o

� New interaction obligations may also be added
– that do not refine any obligation at the abstract level

p1

n1

H \(p1∪n1)[[d]]:
p2

n2

H \(p2∪n2)

p1
'

n1
'

H \(p1
'∪n1

')
p2

'

n2
'

H \(p2
'∪n2

')
p3

'

n3
'

H \(p3
'∪n3

')[[d’]]:



INF5150 INFUIT Haugen / Stølen 47

IN
F 5150

The pragmatics of general refinement

� Use general refinement to perform a combination of
supplementing, narrowing and detailing in a single step

� To define that a particular trace must be present in an 
implementation use xalt and assert to characterize an 
obligation with this trace as the only positive one and all 
other traces as negative



INF5150 INFUIT Haugen / Stølen 48

IN
F 5150

Limited refinement

� Limits the possibility of adding new interaction obligations
� Typically used at a later stage
� d’ is a limited refinement of d if

– d’ is a general refinement of d, and
– every interaction obligation in [[d’]] is a general refinement of at 

least one interaction obligation in [[d]]

p1

n1

H \(p1∪n1)[[d]]:
p2

n2

H \(p2∪n2)

p1
'

n1
'

H \(p1
'∪n1

')
p2

'

n2
'

H \(p2
'∪n2

')
p3

'

n3
'

H \(p3
'∪n3

')[[d’]]:



INF5150 INFUIT Haugen / Stølen 49

IN
F 5150

The pragmatics of limited refinement

� Use assert and switch to limited refinement in order to 
avoid fundamentally new traces being added to the
specification

� To specify globally negative traces, define these as 
negative in all operands of xalt, and switch to limited 
refinement



INF5150 INFUIT Haugen / Stølen 50

IN
F 5150

Compositionality

� A refinement operator ⇝ is compositional if it is
– reflexive: d⇝d
– transitive: d⇝d’∧ d’⇝d’’⇒ d⇝d’’
– the operators refuse, veto, alt, xalt and seq are monotonic w.r.t. ⇝ :

� d⇝d’⇒ refuse d ⇝ refuse d’
� d⇝d’⇒ veto d ⇝ veto d’
� d1⇝ d1’∧ d2⇝ d2’⇒ d1 alt d2 ⇝ d1’ alt d2’
� d1⇝ d1’∧ d2⇝ d2’⇒ d1 xalt d2 ⇝ d1’ xalt d2’
� d1⇝ d1’∧ d2⇝ d2’⇒ d1 seq d2 ⇝ d1’ seq d2’

� Transitivity allows stepwise development
� Monotonicity allow different parts of the specification to be refined

separately
� Supplementing, narrowing, detailing, general refinement and limited 

refinement are all compositional ☺


	The pragmatics of STAIRS��Paper by Ragnhild Kobro Runde, Øystein Haugen and Ketil Stølen
	Today’s topics
	Weak sequencing of trace sets (1)
	Weak sequencing of trace sets (2)
	Weak sequencing of interaction obligations
	Formal semantics of seq
	The pragmatics of creating interactions
	Example: an appointment system
	xalt vs alt (1): CancelAppointment
	xalt vs alt (2): MakeAppointment
	xalt vs alt (3): DecideAppTime
	xalt vs alt (4): CancelAppointment
	xalt vs alt (5)
	Formal semantics of alt and xalt
	opt and skip
	Informal illustration of MakeAppointment
	The pragmatics of alt vs xalt
	Guards (1)
	Guards (2)
	The pragmatics of guards
	Negative behavior
	refuse
	veto
	veto or refuse?
	assert (1)
	assert (2)
	The pragmatics of negation
	The use of seq
	The pragmatics of weak sequencing
	The pragmatics of refining interactions
	The use of supplementing
	Supplementing of interaction obligations
	Supplementing of specifications
	Example of supplementing
	The pragmatics of supplementing
	Narrowing
	Example of narrowing
	The pragmatics of narrowing
	The use of detailing
	Example of detailing
	Detailing
	Formal definition of detailing
	The pragmatics of detailing
	The use of general refinement
	Example of general refinement
	General refinement (of sets of interaction obligations)
	The pragmatics of general refinement
	Limited refinement
	The pragmatics of limited refinement
	Compositionality

