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ICUprocess serving 2 services
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Separation of Concerns

Isolate reusable functions
– through operation/method: parsepos and deccoords

Separate independent concurrent tasks
– through parts in composite structures: icuproc and dataproc

Separate different alternating services
– through submachinestates of internal state machines
– KML and Hotpos
– We have introduced the following invariant:

One user (defined by one mobile telephone) can only be involved in 
one (top level) service at one instant
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ICUprocess with 2 submachine states

Each submachine 
state refers to a 
state machine

These state 
machines are not 

concurrent!



2-Nov-07 INF5150 – Unassailable IT-systems 5

IN
F 5150

Submachine states

Submachine states are states
Submachine states have a state machine definition
– but at the level of the submachine state, they are perceived only 

as states

Submachine states are compiled into JavaFrame 
composite states
– which must not be confused with composite structures!!!
– UML also has something called ”composite states” but they are 

not as powerful as submachine states. The JavaFrame compiler 
does not recognize UML composite states.
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KML process inside ICUprocess
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Hotpos process inside ICUprocess

exit point
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Two assembled transitions
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Execution as seen from JFTrace

2 processes

Stack of states
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Write down the names of these elements
a)

b)

c)

d)

e)

f)

g)

h)

a) Initial state (pseudo state)

b) Choice (pseudo state)

c) Final state

d) Submachine state

e) Exit-point

f) Trigger

g) Effect

h) State Machine
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How to change ICU3 into ICU4 with RSM

The technicalities of changing the old model 
into a new one using submachine states
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Add local state machine(s)
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And then adding a diagram to the state machine
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Then you may copy in state machine elements
select nodes 
and edges

copy

paste into 
new 

diagram
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Then clean up (here ICUprocess)

Create submachinestate
Attach transitions

Remove copied material
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A few points on model validation

about errors and warnings
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The UML models should be validated

A validated UML model means that
– The model is syntactically correct
– The model satisfies a number of static requirements

The RSM validation does not include dynamic validation
– which would have discovered properties of the running model

Our JavaFrame profile works on a subset of UML
– which means that some requirements are not significant
– they should still preferably be correct even though they would not 

matter for the execution
but later versions may take them into account
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Problems with ICU3

Mismatch between parameters, but 
the implementation still works

Messages in SeDi are not coded 
exactly as UML2 specifies regarding 

parameters. This is on purpose.
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Fixing these problems by ignoring them
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Sessions – Multiple concurrent users
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Motivation

Assume having several users using ICU concurrently
– The system could try and handle one user at the time
– The system could try and handle everybody at the same time, but 

keep their data apart

Some things take real time outside the ICU system
– Users thinking
– Positioning
– SMS forwarding

Potentially
– Handling all users ”at the same time” may gain overall throughput
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Risks

The ICU system confuses which user has which position
The ICU system returns SMS’es to the wrong user
Coordinates are garbled
– x-coordinate from one user and y-coordinate from another
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This should not happen ....
negative traces!

returning to 
Oystein a 

KML-file with 
Trine’s pos
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What would our current design do?

The second SMS 
would come here!

The second SMS 
would simply be 
discarded as a 

”default transition”

Introducing defer for Sms on every 
state but Idle, will cause services to 

be performed in sequence
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Defining Signal trigger Sms

Making SMS a ”signal 
trigger” on a transition
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Defer on the service submachine states

Defining a ”deferrable trigger”
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Comparing ICU4 and ICU4-DEFER

queued ”Stud1 konto 
oysteinh hotpos”

ICU4 ignored the 
second service request

ICU4-DEFER 
sequences the requests
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The ”session” solution

Each initiative by a user is represented by a state 
machine (a session)
– with all the temporary data associated with that user
– taking care of all the communication related to that user

The session is generated when the user initiates a 
service
The session is terminated when the service is finished
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A new composite structure
several sessions

session generator

Archive unchanged (almost)
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Buzzzzz Groups (5 minutes)

Discuss what represents sessions in the ICU systems
Discuss what could represent sessions in the ”Survival of 
the SMSest”
Determine what should identify a session of the ICU 
system
Determine what could identify a session in the Survival of 
the SMSest
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Enhancing the behavior

The receptionist: 
handling all input 

signals

ICUprocess: 
very similar to 

before

creation!

routing!

signal 
enhancement
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ICUcontroller

creation!routing!
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Creating a session

routing information so 
that the new member to 
come will ever be found

create a new member of 
the icuproc set of parts

sending a message to 
the generated process
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Simple Routing (1) One-to-many Port

...

mediatorList

...

idList

pointers to 
all existing 
icuproc’s

ids of all 
existing 

icuproc’s



2-Nov-07 INF5150 – Unassailable IT-systems 35

IN
F 5150

Simple Routing (2) Adding the ID

...

mediatorList

...

idList

sig.getFrom()
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Simple Routing (3) Connecting connectors

...

mediatorList

...

idList

-> from_contr

Id and address match!
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Technicalities of the Create-stereotype

add a create-stereotype

give the enclosing type
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Adding a parameter to the dynamic process
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Simple Routing (4) Forwarding from Port

...

mediatorList

...

idList

signal has ID corresponding 
address

find the right 
ICUprocess
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Simple Routing (5) forward() is programmed!
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Simple Routing (6) The routing central

why go 
through contr? otherwise the output 

port from dataproc
would have to route; 

our approach is simpler
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Terminating a session

At the final state the 
ICUprocess

representing the 
session will terminate

The compiler and 
JavaFrame makes sure 
that the implementation 
gets rid of the session
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Executing ICU5 (with Sessions)

ICU5: more 
concurrency

ICU4-DEFER: 
sequentialized

Technicality: StaticID 
must be 8 chars
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Summary of Sessions

One session per concurrent user initiative
– The state machine type ICUprocess describes the session

One receptionist state machine creates the sessions
– when the session initiation arrives
– here: Sms-message

Centralized routing through the receptionist contr
– one routing port (SimpleIdRouterMediator)
– all signals aiming for a session are sent through contr

Terminating the session by reaching the final state
– and the runtime system machinery takes care of the rest
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