
2-Nov-07 INF5150 – Unassailable IT-systems 1

IN
F 5150

Services as Submachine States
Service instantiations as concurrent parts

Version 071102

2-Nov-07 INF5150 – Unassailable IT-systems 2

IN
F 5150

ICUprocess serving 2 services

2-Nov-07 INF5150 – Unassailable IT-systems 3

IN
F 5150

Separation of Concerns

Isolate reusable functions
– through operation/method: parsepos and deccoords

Separate independent concurrent tasks
– through parts in composite structures: icuproc and dataproc

Separate different alternating services
– through submachinestates of internal state machines
– KML and Hotpos
– We have introduced the following invariant:

One user (defined by one mobile telephone) can only be involved in
one (top level) service at one instant

2-Nov-07 INF5150 – Unassailable IT-systems 4

IN
F 5150

ICUprocess with 2 submachine states

Each submachine
state refers to a
state machine

These state
machines are not

concurrent!

2-Nov-07 INF5150 – Unassailable IT-systems 5

IN
F 5150

Submachine states

Submachine states are states
Submachine states have a state machine definition
– but at the level of the submachine state, they are perceived only

as states

Submachine states are compiled into JavaFrame
composite states
– which must not be confused with composite structures!!!
– UML also has something called ”composite states” but they are

not as powerful as submachine states. The JavaFrame compiler
does not recognize UML composite states.

2-Nov-07 INF5150 – Unassailable IT-systems 6

IN
F 5150

KML process inside ICUprocess

2-Nov-07 INF5150 – Unassailable IT-systems 7

IN
F 5150

Hotpos process inside ICUprocess

exit point

2-Nov-07 INF5150 – Unassailable IT-systems 8

IN
F 5150

Two assembled transitions

2-Nov-07 INF5150 – Unassailable IT-systems 9

IN
F 5150

Execution as seen from JFTrace

2 processes

Stack of states

2-Nov-07 INF5150 – Unassailable IT-systems 10

IN
F 5150

Write down the names of these elements
a)

b)

c)

d)

e)

f)

g)

h)

a) Initial state (pseudo state)

b) Choice (pseudo state)

c) Final state

d) Submachine state

e) Exit-point

f) Trigger

g) Effect

h) State Machine

2-Nov-07 INF5150 – Unassailable IT-systems 11

IN
F 5150

How to change ICU3 into ICU4 with RSM

The technicalities of changing the old model
into a new one using submachine states

2-Nov-07 INF5150 – Unassailable IT-systems 12

IN
F 5150

Add local state machine(s)

2-Nov-07 INF5150 – Unassailable IT-systems 13

IN
F 5150

And then adding a diagram to the state machine

2-Nov-07 INF5150 – Unassailable IT-systems 14

IN
F 5150

Then you may copy in state machine elements
select nodes
and edges

copy

paste into
new

diagram

2-Nov-07 INF5150 – Unassailable IT-systems 15

IN
F 5150

Then clean up (here ICUprocess)

Create submachinestate
Attach transitions

Remove copied material

2-Nov-07 INF5150 – Unassailable IT-systems 16

IN
F 5150

A few points on model validation

about errors and warnings

2-Nov-07 INF5150 – Unassailable IT-systems 17

IN
F 5150

The UML models should be validated

A validated UML model means that
– The model is syntactically correct
– The model satisfies a number of static requirements

The RSM validation does not include dynamic validation
– which would have discovered properties of the running model

Our JavaFrame profile works on a subset of UML
– which means that some requirements are not significant
– they should still preferably be correct even though they would not

matter for the execution
but later versions may take them into account

2-Nov-07 INF5150 – Unassailable IT-systems 18

IN
F 5150

Problems with ICU3

Mismatch between parameters, but
the implementation still works

Messages in SeDi are not coded
exactly as UML2 specifies regarding

parameters. This is on purpose.

2-Nov-07 INF5150 – Unassailable IT-systems 19

IN
F 5150

Fixing these problems by ignoring them

2-Nov-07 INF5150 – Unassailable IT-systems 20

IN
F 5150

Sessions – Multiple concurrent users

2-Nov-07 INF5150 – Unassailable IT-systems 21

IN
F 5150

Motivation

Assume having several users using ICU concurrently
– The system could try and handle one user at the time
– The system could try and handle everybody at the same time, but

keep their data apart

Some things take real time outside the ICU system
– Users thinking
– Positioning
– SMS forwarding

Potentially
– Handling all users ”at the same time” may gain overall throughput

2-Nov-07 INF5150 – Unassailable IT-systems 22

IN
F 5150

Risks

The ICU system confuses which user has which position
The ICU system returns SMS’es to the wrong user
Coordinates are garbled
– x-coordinate from one user and y-coordinate from another

2-Nov-07 INF5150 – Unassailable IT-systems 23

IN
F 5150

This should not happen
negative traces!

returning to
Oystein a

KML-file with
Trine’s pos

2-Nov-07 INF5150 – Unassailable IT-systems 24

IN
F 5150

What would our current design do?

The second SMS
would come here!

The second SMS
would simply be
discarded as a

”default transition”

Introducing defer for Sms on every
state but Idle, will cause services to

be performed in sequence

2-Nov-07 INF5150 – Unassailable IT-systems 25

IN
F 5150

Defining Signal trigger Sms

Making SMS a ”signal
trigger” on a transition

2-Nov-07 INF5150 – Unassailable IT-systems 26

IN
F 5150

Defer on the service submachine states

Defining a ”deferrable trigger”

2-Nov-07 INF5150 – Unassailable IT-systems 27

IN
F 5150

Comparing ICU4 and ICU4-DEFER

queued ”Stud1 konto
oysteinh hotpos”

ICU4 ignored the
second service request

ICU4-DEFER
sequences the requests

2-Nov-07 INF5150 – Unassailable IT-systems 28

IN
F 5150

The ”session” solution

Each initiative by a user is represented by a state
machine (a session)
– with all the temporary data associated with that user
– taking care of all the communication related to that user

The session is generated when the user initiates a
service
The session is terminated when the service is finished

2-Nov-07 INF5150 – Unassailable IT-systems 29

IN
F 5150

A new composite structure
several sessions

session generator

Archive unchanged (almost)

2-Nov-07 INF5150 – Unassailable IT-systems 30

IN
F 5150

Buzzzzz Groups (5 minutes)

Discuss what represents sessions in the ICU systems
Discuss what could represent sessions in the ”Survival of
the SMSest”
Determine what should identify a session of the ICU
system
Determine what could identify a session in the Survival of
the SMSest

2-Nov-07 INF5150 – Unassailable IT-systems 31

IN
F 5150

Enhancing the behavior

The receptionist:
handling all input

signals

ICUprocess:
very similar to

before

creation!

routing!

signal
enhancement

2-Nov-07 INF5150 – Unassailable IT-systems 32

IN
F 5150

ICUcontroller

creation!routing!

2-Nov-07 INF5150 – Unassailable IT-systems 33

IN
F 5150

Creating a session

routing information so
that the new member to
come will ever be found

create a new member of
the icuproc set of parts

sending a message to
the generated process

2-Nov-07 INF5150 – Unassailable IT-systems 34

IN
F 5150

Simple Routing (1) One-to-many Port

...

mediatorList

...

idList

pointers to
all existing
icuproc’s

ids of all
existing

icuproc’s

2-Nov-07 INF5150 – Unassailable IT-systems 35

IN
F 5150

Simple Routing (2) Adding the ID

...

mediatorList

...

idList

sig.getFrom()

2-Nov-07 INF5150 – Unassailable IT-systems 36

IN
F 5150

Simple Routing (3) Connecting connectors

...

mediatorList

...

idList

-> from_contr

Id and address match!

2-Nov-07 INF5150 – Unassailable IT-systems 37

IN
F 5150

Technicalities of the Create-stereotype

add a create-stereotype

give the enclosing type

2-Nov-07 INF5150 – Unassailable IT-systems 38

IN
F 5150

Adding a parameter to the dynamic process

2-Nov-07 INF5150 – Unassailable IT-systems 39

IN
F 5150

Simple Routing (4) Forwarding from Port

...

mediatorList

...

idList

signal has ID corresponding
address

find the right
ICUprocess

2-Nov-07 INF5150 – Unassailable IT-systems 40

IN
F 5150

Simple Routing (5) forward() is programmed!

2-Nov-07 INF5150 – Unassailable IT-systems 41

IN
F 5150

Simple Routing (6) The routing central

why go
through contr? otherwise the output

port from dataproc
would have to route;

our approach is simpler

2-Nov-07 INF5150 – Unassailable IT-systems 42

IN
F 5150

Terminating a session

At the final state the
ICUprocess

representing the
session will terminate

The compiler and
JavaFrame makes sure
that the implementation
gets rid of the session

2-Nov-07 INF5150 – Unassailable IT-systems 43

IN
F 5150

Executing ICU5 (with Sessions)

ICU5: more
concurrency

ICU4-DEFER:
sequentialized

Technicality: StaticID
must be 8 chars

2-Nov-07 INF5150 – Unassailable IT-systems 44

IN
F 5150

Summary of Sessions

One session per concurrent user initiative
– The state machine type ICUprocess describes the session

One receptionist state machine creates the sessions
– when the session initiation arrives
– here: Sms-message

Centralized routing through the receptionist contr
– one routing port (SimpleIdRouterMediator)
– all signals aiming for a session are sent through contr

Terminating the session by reaching the final state
– and the runtime system machinery takes care of the rest

	Services as Submachine States�Service instantiations as concurrent parts
	ICUprocess serving 2 services
	Separation of Concerns
	ICUprocess with 2 submachine states
	Submachine states
	KML process inside ICUprocess
	Hotpos process inside ICUprocess
	Two assembled transitions
	Execution as seen from JFTrace
	Write down the names of these elements
	How to change ICU3 into ICU4 with RSM
	Add local state machine(s)
	And then adding a diagram to the state machine
	Then you may copy in state machine elements
	Then clean up (here ICUprocess)
	A few points on model validation
	The UML models should be validated
	Problems with ICU3
	Fixing these problems by ignoring them
	Sessions – Multiple concurrent users
	Motivation
	Risks
	This should not happen
	What would our current design do?
	Defining Signal trigger Sms
	Defer on the service submachine states
	Comparing ICU4 and ICU4-DEFER
	The ”session” solution
	A new composite structure
	Buzzzzz Groups (5 minutes)
	Enhancing the behavior
	ICUcontroller
	Creating a session
	Simple Routing (1) One-to-many Port
	Simple Routing (2) Adding the ID
	Simple Routing (3) Connecting connectors
	Technicalities of the Create-stereotype
	Adding a parameter to the dynamic process
	Simple Routing (4) Forwarding from Port
	Simple Routing (5) forward() is programmed!
	Simple Routing (6) The routing central
	Terminating a session
	Executing ICU5 (with Sessions)
	Summary of Sessions

