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Abstract
In UML, the operator neg is used to specify negative, or unwanted,
system behaviour. We agree that being able to specify negative
behaviour is important. However, the UML neg is currently not well-
suited for this purpose, the main problem being that a single operator
is used with several different meanings depending on the context. In
this paper we investigate some alternative definitions of neg. We also
propose a solution in which neg is replaced by two new operators for
specifying negative behaviour.

1 Introduction
In the interactions of UML 2.0 [OMG04], the unary operator neg is used to
describe negative or invalid behaviour, i.e. scenarios that must not occur. By
using structuring mechanisms like neg and the other interaction operators of
UML 2.0, it is possible to “describe a number of traces in a compact and concise
manner” [OMG04].

Interactions are typically used only to describe possible executions of the
system. This means that nothing can be deduced about the validity of system
behaviour not described by the interaction. In such a setting, it is particularly
important to be able to specify negative as well as positive behaviours. Hence,
we say that an interaction describes a set of positive behaviours, and a set of
negative behaviours. Behaviours that are neither categorized as positive nor as
negative are called inconclusive [HS03].

The problem with the UML neg operator is that people tend to interpret it
differently depending on the context in which the operator appears. This makes it
difficult to define a precise semantics for neg. The advantages of having a precise
semantics include the following:

• it gives a clear answer in cases where intuition is weak.

• it facilitates formal reasoning.

• it forms a basis for tool-vendors and methodology builders.

2 Background
To set the stage for detailed discussion, in this section we give a brief introduction
to UML 2.0 interactions and their semantics as defined in STAIRS [HHRS05a,
HHRS05b].
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Figure 1: A simple interaction

Interactions and trace semantics

We define the semantics of interactions by sets of traces. A trace is a sequence
of events, used to represent some system run. We distinguish between two
kinds of events, the sending and reception of a message m, denoted !m and ?m,
respectively.

A simple example of an interaction in the form of a sequence diagram is given
in Figure 1. This diagram specifies that A sends the messages x and y to B. A and
B are called lifelines, each representing an object or a component in the system
or its environment. The traces described by a diagram like this, are all possible
sequences of events in the diagram such that both the send event is ordered before
the corresponding receive event, and events on the same lifeline are ordered from
the top and downwards. For the example in Figure 1, it follows that the first
event to happen must be the sending of x. After that, either B may receive x
or A may send y. The diagram thus specifies the two traces 〈!x, ?x, !y, ?y〉 and
〈!x, !y, ?x, ?y〉.

Formally, we define the semantics of interaction diagrams by a function [[ ]]
that for any diagram d yields a pair (p, n) of trace-sets. The traces in p are called
the positive traces of d, representing traces that may be the result of running the
final system. The traces in n are called the negative traces of d, and must not
appear in the final implementation. Traces that are neither defined as positive nor
as negative are called inconclusive. We let H denote the set of all traces where for
each message, the send event is ordered before the corresponding receive event.

To illustrate the semantics of an interaction, we use a circle that is divided
into three regions as shown in Figure 2. The circle as a whole corresponds to H,
the set of all possible traces. The topmost region represents the positive trace-set
p, the lowest region represents the negative trace-set n, while the middle region
contains the inconclusive traces.

Definition 1 The semantics of a diagram consisting of a single event e, is given by:

[[ e ]]
def
= {({〈e〉}, ∅)}

Weak sequencing (seq) is the implicit composition mechanism construct
used to create diagrams like the one in Figure 1, one of its possible textual
representations being (!x seq ?x) seq (!y seq ?y).
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Figure 2: Illustrating the traces of an interaction

Definition 2 Assume [[ d1 ]] = (p1, n1) and [[ d2 ]] = (p2 , n2). We then define the
semantics of seq by:

[[ d1 seq d2 ]]
def
= (p1 % p2, (n1 % p2) ∪ (n1 % n2) ∪ (p1 % n2))

where weak sequencing of trace-sets,%, is defined as:

s1 % s2
def
= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : h↾ l = h1 ↾ l ⌢ h2 ↾ l}

where L is the set of all lifelines, ⌢ is the concatenation operator on sequences, and h ↾ l
is the trace h with all events not taking place on the lifeline l removed.

More complex interactions are constructed through the application of various
operators. In this paper we only need one more operator, namely alt for
specifying alternative behaviour. Definitions of other central operators may be
found in e.g. [HHRS05a].

Definition 3 Assume [[ d1 ]] = (p1, n1) and [[ d2 ]] = (p2 , n2). We then define the
semantics of alt by:

[[ d1 alt d2 ]]
def
= (p1 ∪ p2, n1 ∪ n2)

Refinement
Refinement means to add information to a specification such that the specification
becomes more complete. This may be achieved by categorizing inconclusive
traces as either positive or negative, or by reducing the set of positive traces.
Negative traces always remain negative.

Definition 4 Assume [[ d ]] = (p, n) and [[ d′ ]] = (p′ , n′). Refinement, , is defined
by:

d d′
def
= n ⊆ n′ ∧ p ⊆ p′ ∪ n′

If d d′, we say that d is refined by d′, or that d′ is a refinement of d.
More details with motivation and examples using this definition may be

found in [HHRS05a] and [HHRS05b]. In [HHRS05c] we have proved that
refinement as defined above is transitive, meaning that the result of several
successive refinement steps will be a valid refinement of the original specification.



3 Alternative definitions of neg
Obviously, the intuition behind neg d is that the positive traces described by d
should be taken as negative. But as a definition, it is not complete, because it fails
to answer questions such as:

1. Does neg neg d mean the same as d?

2. What happens to the negative traces of d?

3. What should be the positive traces of neg d?

In this section we focus on the last question, by investigating the following
possible answers:

a. The negative traces of d.

b. All traces except the negative traces of neg d.

c. No trace at all.

d. The empty trace.

All of these are feasible answers, and to some extent they are already used in
practice. We will give formal definitions for each of the given alternatives, and
discuss them from both a practical and a formal point of view. During our
treatment of alternative a, we will also answer questions 1 and 2 above.

A basic premise in the following discussion is that we want compositionality
(in formal theory often called monotonicity), meaning that by refining the
different interaction operands separately, we obtain a refinement of the complete
interaction. In the context of neg this means that for a (sub-)specification neg d, if
d′ is a refinement of the operand d, then neg d′ should be a refinement of neg d.

Alternative a: The positive traces of neg d are the negative traces of
d
Intuitively, given the interpretation of negation in classical logic, it is natural to
view neg d as the opposite of d, taking the negative traces of d as the positive
traces of neg d.

Definition 5 Assume [[ d ]] = (p, n). Then the semantics of neg may be defined by:

[[ neg d ]]
def
= (n, p)

With this definition we get neg neg d = d, as is the case of negation in classical
logic. However, it is not obvious that logical negation is a good parallel to
negation in the context of interactions. In fact, the following example gives a
formal argument for why this is not a good interpretation of neg.

Consider the four specifications in Figure 3(a), where we only have the three
traces A, B and C. The specification d′ is a valid refinement of d, d  d′, where
the originally positive trace B has been redefined as negative in d′. The figure
also illustrates the negated specifications neg d and neg d′. Since we have d  d′,
by compositionality we should also have neg d  neg d′. However, this is not
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Figure 3: Example specifications

the case as the trace B has been moved from negative to positive, violating the
refinement requirement n ⊆ n′.

To sum up, if we want compositionality with respect to neg (and we do), then
definition 5 is not a good definition for neg. Also, we may conclude that the
answer to question 1 above is that neg neg d should not be the same as d.

Negative traces remain negative

As indicated by the above example, the negative traces in d cannot be defined as
positive for neg d. By a similar argument, it may be demonstrated that they cannot
be defined as inconclusive either. The only remaining alternative is to include the
negative traces of d in the negative trace-set of neg d. Hence, the negative traces
of neg d must be the positive and negative traces of d, combined.

The answer to question 2 is then that the negative traces of d remain negative
for neg d. Hence, for the rest of this paper we only consider definitions where this
is indeed the case. We now return to the discussion of the different alternatives
for the positive traces of neg d.

Alternative b: The positive traces of neg d are all traces except the
negative traces of neg d
Another possibility is to let the positive traces of neg d be all traces except
the negative traces of neg d (which, as we have argued, should consist of the
positive and negative traces of d). The intuition here is that by using neg, the
specification focuses on what is not allowed, and therefore everything else should
be considered legal (i.e. positive).

Definition 6 Assume [[ d ]] = (p, n). Then the semantics of neg may be defined by:

[[ neg d ]]
def
= (H \ (p ∪ n), p ∪ n)

Figure 3(b) gives an example using this definition, with H (the universe of
possible traces) being the set {A, B, C, D}. In the example we have both d  d′

(by categorizing the trace B as negative) and neg d  neg d′ (by redefining the
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Figure 4: Ordering coffee

trace B as negative) as desired. Compositionality is not simply a feature of this
particular example, in Appendix A we prove that it is in fact a general property
of definition 6.

As the example demonstrates, all inconclusive traces for d are by definition
made positive for neg d. This makes it impossible to write a specification defining
some positive and negative traces, while wanting the rest to be inconclusive
(as they will be considered positive by definition). Hence, using neg with this
definition results in a less powerful specification language.

Alternative c: neg d has no positive traces

The two previous sections have discussed the two alternatives where the positive
traces of neg d should be the negative or inconclusive traces of d, concluding that
none of these is an ideal solution. A third alternative, then, is to say that neg d has
no positive traces at all. The operator neg should be used to specify negative
behaviour, and nothing else.

Definition 7 Assume [[ d ]] = (p, n). Then the semantics of neg may be defined by:

[[ neg d ]]
def
= (∅, p ∪ n)

To understand the effect of this definition, it is useful to look at example
interactions using neg in combination with other operators such as seq and alt.
For the examples, we will use a simple vending machine selling tea and coffee.

The interaction in Figure 4 specifies two traces, both starting with the
customer ordering coffee. The first alt-operand specifies that the machine giving
coffee to the customer is a positive trace. This operand defines no negative traces.
The second alt-operand specifies no positive traces, but states that giving tea is
negative. Using the definition of seq to combine the first message of ordering
coffee with the alt-fragment, we get that ordering and getting coffee is positive,
while ordering coffee and getting tea is negative.

The interaction in Figure 5 is meant to specify that if the customer orders tea
with no sugar, then the machine should not add sugar before giving the tea to the
customer. However, with the given definitions of neg and seq, the actual meaning
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Figure 5: Ordering tea

of this interaction is not what intuition believes it to be. The neg-fragment in
itself defines adding sugar as negative. Together with the remaining traces of
the interaction, we then get that the trace of ordering tea, ordering no sugar,
the machine adding sugar and then giving tea is a negative trace. This is in
accordance with the intuition.

But, using the definitions of seq and neg, we get that the interaction in Figure 5
has no positive traces! This results from fact that the neg-fragment has no positive
traces, and that a set of traces sequenced with the empty set gives the empty set.
This is not in accordance with the intuition that the interaction should have the
same positive traces as the same interaction only with the neg-fragment simply
removed.

A possible solution to this problem could be to change the definition of weak
sequencing of trace-sets to include special cases for the empty set.

Definition 8 Weak sequencing of trace-sets may instead be defined as:

s1 % s2
def
=







s2 if s1 = ∅
s1 if s2 = ∅
{h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : h↾ l = h1 ↾ l ⌢ h2 ↾ l} otherwise

However, it turns out that this definition does not give compositionality
for seq. With seq being the basic composition operator, it is essential that it
is compositional in order to let the different parts of a basic interaction be
refined separately. Hence, we have kept definition 2, for which we have proved
compositionality in [HHRS05c].

Alternative d: The only positive trace for neg d is the empty trace

Another alternative, motivated by the above discussion on Figure 5, is to let the
empty trace be positive for neg d.

Definition 9 Assume [[ d ]] = (p, n). Then the semantics of neg may be defined by:

[[ neg d ]]
def
= ({〈〉}, p ∪ n)



As opposed to the empty trace-set ∅ having no behaviours at all, the empty
trace 〈〉 represents the possible behaviour of doing nothing. In the context of
Figure 5, this is a highly relevant distinction.

Using definition 9, we get the same negative trace(s) as we did with
definition 7. The difference is that Figure 5 with definition 9 also specifies
the intended result that ordering tea, ordering no sugar and then receiving tea
(without sugar) is positive. This is because a trace sequenced with the empty
trace equals the original trace, meaning that we may simply omit the negative
fragments from an interaction when calculating its positive traces.

From this example, it is tempting to believe that definition 9 is a better
definition of neg than definition 7. However, returning to the example in Figure 4,
we will demonstrate that this is not the case. With our new definition of neg,
the second alt-operand in Figure 4 gives that the empty trace 〈〉 is positive.
Combining this with the first message in the diagram, we get that ordering coffee
but not getting anything is a positive trace. This result is however not intended
when using neg in this context.

Hence, neither definition 7 nor definition 9 are perfect definitions for neg. In
the next section we propose a solution that is based on multiple operators for
negation.

Suggested solution

As we have demonstrated, it is not possible to give one single context-free
definition of neg capturing all its intuitive meanings. We do not regard
introducing context-sensitive definitions to be a good solution, as they tend to
be very complicated and difficult to use. Instead, we strongly believe that most
of the problems come from having only one operator for specifying negative
behaviour. Hence, our solution is to define two different operators for negation,
capturing the most important uses of the neg operator.

First we introduce skip, the empty diagram corresponding to a program doing
nothing.

Definition 10 The semantics of skip, the empty diagram, is defined as

[[ skip ]]
def
= ({〈〉}, ∅)

Of the alternative definitions given for neg, we believe that definition 7 is the
most fundamental one. We therefore define a new basic operator refuse using this
definition.

Definition 11 Assume [[ d ]] = (p, n). We then define the semantics of refuse by:

[[ refuse d ]]
def
= (∅, p ∪ n)

The operator refuse may be used to define other operators for specifying negative
behaviour, and is also meant to be used when specifying that one of the operands
of an alt-fragment represents negative behaviour (as in Figure 4).

We may now define another operator veto as a high-level operator.



Definition 12 Assume [[ d ]] = (p, n). We then define the semantics of veto by:

veto d
def
= skip alt (refuse d)

This definition is equal to the alternative definition 9 above, and is meant to
be used when specifying additional messages that make otherwise positive
behaviours negative (as in Figure 5).

If desirable, it is also possible to define another operator corresponding to
definition 6, in order to specify that everything apart from the given traces should
be positive. Additional negation operators may also be defined. However, this
should be done with great care, because even though more operators may result
in a more expressive language, it might lead to reduced readability.

A major challenge is to find unambiguous and intuitive names for the
different negation operators proposed here. We do not claim to have succeeded
in this task. Our main contribution is that it is necessary to have more than one
operator for specifying negative behaviour, and that some of these might be high-
level operators derived from a well-chosen set of basic operators.

4 Related work
Störrle [Stö03] discusses three alternative definitions for neg. His first alternative,
referred to as “not the traces of d”, defines that neg d has no positive traces,
and that the negative traces of neg d are the positive traces of d. Since the
negative traces of d are lost with this definition, this alternative is rejected. His
second alternative, “anything but d”, is similar to our alternative definition 6,
except that the negative traces of d are considered positive for neg d. The third
alternative he proposes, “flip valid and invalid”, equals our definition 5. Of the
three alternatives, Störrle chooses this third interpretation, calling it “the only
consistent approach”, as it gives neg neg d = d. But, as we have argued in this
paper, logical negation is not the most obvious interpretation of negation in the
context of interactions.

In [CK04], Cengarle and Knapp define the semantics of UML 2.0 interactions
by the notions of positive and negative satisfaction. Based on a similar argument
as the one we presented in favour of definition 9, they regard the empty trace as
positive for neg d. However, the negative traces of d are inconclusive for neg d (as
in the first of Störrle’s definitions). For alternatives, specified by alt, they define
that a trace is negative only if it is negative in both operands. This means that with
their semantics, the interaction in Figure 4 has no negative traces even though it
uses the operator neg.

Cengarle and Knapp pose an interesting question related to the use of
negation in specifications: Should a trace be negative if a prefix of it is specified
as negative? The answer in [CK04] is principally yes, proposing an even stronger
approach where a trace is taken as negative as soon as it has completed a negative
sub-diagram. An advantage of this is that it allows for earlier identification (or
even prevention) of negative traces.

As an example of this approach, consider again the specification in Figure 4
(interpreting neg as refuse). The specification states that ordering coffee and then
receiving tea is a negative trace. But what about the trace which then continues
with the customer receiving coffee as well — should this be positive or negative?



In STAIRS we regard such a trace as inconclusive, arguing that if a trace is not
described in the diagram, then the specifier has either not thought about the
situation or not wanted to classify it as either positive or negative.

The alternative, as proposed in [CK04], would be to say that the trace of
ordering coffee, first receiving tea and then receiving coffee is negative. In
general, once a negative (sub-)scenario has occurred, the total trace will be
negative independently of what happens next. Formally, this may be achieved
by the following definitions:

Definition 13 Assume [[ d1 ]] = (p1 , n1) and [[ d2 ]] = (p2 , n2). Then the semantics of
refuse may be defined by:

[[ refuse d1 ]]
def
= (∅, (p1 ∪ n1) % H)

The semantics of seq may be defined by:

[[ d1 seq d2 ]]
def
= (p1 % p2, n1 ∪ (p1 % n2))

In appendix A, we prove compositionality with respect to these alternative
definitions.

These definitions are somewhat different from those in [CK04]. Translated to
our formalism, they append H only to the negative traces of the first operand
of seq, and not to the negative traces of the second operand or to the negative
traces of neg. We believe that our definition corresponds more closely to the
intuition behind this alternative approach. In contrast to the definitions in [CK04],
definition 13 also ensures that skip is an identity element for seq, i.e. [[ d seq skip ]] =
[[ d ]].

Even without considering the possible formal definitions, there is at least
one large disadvantage of this approach. If a trace is negative as soon as it
has traversed a negative region, it follows that for a trace to be positive, all of
its prefixes would have to be positive or at least inconclusive. In our vending
machine example, this means that it would not be possible to make a consistent
specification where ordering and getting coffee is positive, while ordering coffee
and not getting anything (i.e. nothing more happens) is negative.

5 Conclusions
We have discussed alternative definitions of neg, considering both formal and
practical issues. None of the proposed alternatives are able to capture all the
different uses of the neg operator. As a result, we find it necessary to have
more than one operator for specifying negative behaviour. In this paper we have
proposed to replace neg with two new operators, for which the given definitions
ensures compositionality.
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A Proofs
For all proofs in this section, we use [[ d ]] = (p, n), [[ d′ ]] = (p′, n′),
[[ d1 ]] = (p1 , n1), [[ d′1 ]] = (p′1, n′

1), [[ d2 ]] = (p2 , n2) and [[ d′2 ]] = (p′2 , n′
2). We

also use (s1 ∪ s2) % s3 = (s1 % s3) ∪ (s2 % s3), as proved in [HHRS05c]. Also,
recall that a definition of neg is compositional if for any two specifications d and
d′ such that d  d′, we also have neg d  neg d′. Similarly for compositionality
of other operators such as seq and refuse.

Theorem 1 Definition 6 of neg is compositional with respect to refinement as defined in
definition 4.

Proof: Using definition 6, we get [[ neg d ]] = (H \ (p ∪ n), p ∪ n) and
[[ neg d′ ]] = (H \ (p′ ∪ n′), p′ ∪ n′). By definition 4, we need to prove p ∪ n ⊆
p′ ∪ n′ and H \ (p ∪ n) ⊆ (H \ (p′ ∪ n′)) ∪ (p′ ∪ n′). The last condition is trivial,
as the right side equals H. As d is refined by d′ (by assumption), we have n ⊆ n′

and p ⊆ p′ ∪ n′, giving p ∪ n ⊆ p′ ∪ n′ as required.



Theorem 2 Definition 7 of neg is compositional with respect to refinement as defined in
definition 4.

Proof: Using definition 7, we get [[ neg d ]] = (∅, p ∪ n) and
[[ neg d′ ]] = (∅, p′ ∪ n′). By definition 4, we need to prove p ∪ n ⊆ p′ ∪ n′ and
∅ ⊆ ∅ ∪ (p ∪ n). The last condition is trivial. As d is refined by d′, we have n ⊆ n′

and p ⊆ p′ ∪ n′, giving p ∪ n ⊆ p′ ∪ n′ as required.

Theorem 3 Definition 9 of neg is compositional with respect to refinement as defined in
definition 4.

Proof: Similar to the proof of Theorem 2, replacing every occurence of ∅ with
{〈〉}.

Theorem 4 Definition 13 of refuse and seq is compositional with respect to refinement
as defined in definition 4.

Proof for refuse: Using definition 13, we get [[ refuse d ]] = (∅, (p ∪ n) % H)
and [[ refuse d′ ]] = (∅, (p′ ∪ n′) % H). By definition 4, we need to prove
(p ∪ n) % H ⊆ (p′ ∪ n′) % H and ∅ ⊆ ∅ ∪ ((p′ ∪ n′) % H). The last condition
is trivial. As d is refined by d′, we have n ⊆ n′ and p ⊆ p′ ∪ n′, which together
with definition 2 of % gives n % H ⊆ n′ % H and p % H ⊆ (p′ ∪ n′) % H,
i.e. (p % H)∪ (n % H) ⊆ (p′ % H) ∪ (n′ % H) as required.

Proof for seq: Using definition 13, we get [[ d1 seq d2 ]] = (p1 % p2, n1 ∪ (p1 %
n2)) and [[ d′1 seq d′2 ]] = (p′1 % p′2, n′

1 ∪ (p′1 % n′
2)) By definition 4, we

need to prove n1 ∪ (p1 % n2) ⊆ n′
1 ∪ (p′1 % n′

2) and p1 % p2 ⊆ (p′1 %
p′2) ∪ (n′

1 ∪ (p′1 % n′
2)). As d1 is refined by d′1 and d2 is refined by d′2, we have

n1 ⊆ n′
1, p1 ⊆ p′1 ∪ n′

1 and n2 ⊆ n′
2, which together with definition 2 of % gives

n1 ∪ (p1 % n2) ⊆ n′
1 ∪ ((p′1 ∪ n′

1) % n′
2) = n′

1 ∪ (p′1 % n′
2) ∪ (n′

1 % n′
2). By

lemma 1, this is a subset of n′
1 ∪ (p′1 % n′

2) which was to be proved. Similarly, we
get p1 % p2 ⊆ (p′1 ∪ n′

1) % (p′2 ∪ n′
2) = (p′1 % p′2) ∪ (p′1 % n′

2) ∪ (n′
1 % (p′2 ∪ n′

2)).
By lemma 1, this is a subset of (p′1 % p′2)∪ (p′1 % n′

2)∪ n′
1 which was to be proved.

Lemma 1 Given an arbitrary interaction d with negative trace-set n, i.e. [[ d ]] = (p, n),
we have n % s ⊆ n for any trace-set s ⊆ H.

Proof: By induction over the structure of d.
Base case: d is a single event e, i.e. n = ∅ by definition 1. As ∅ % s = ∅ by
definition 2, we get ∅ % s ⊆ ∅ as required.
Case 1: d = neg d1, i.e. n = (p1 ∪ n1) % H by definition 13. As H % s ⊆ H for
arbitrary s, we get (p1 ∪ n1) % H % s ⊆ (p1 ∪ n1) % H as required.
Case 2: d = d1 alt d2, i.e. n = n1 ∪ n2 by definition 3. By induction hypothesis, we
have n1 % s ⊆ n1 and n2 % s ⊆ n2, giving (n1 ∪ n2) % s = (n1 % s) ∪ (n2 % s) ⊆
n1 ∪ n2 as required.
Case 3: d = d1 seq d2, i.e. n = n1 ∪ (p1 % n2) by definition 13. By induction
hypothesis, we have n1 % s ⊆ n1 and n2 % s ⊆ n2, giving ((n1 ∪ (p1 % n2)) %
s = (n1 % s) ∪ (p1 % n2 % s) ⊆ n1 ∪ (p1 % n2) as required.


