
26-Sep-08 INF5150 – Unassailable IT-systems 1

IN
F 5150

Agile modeling – for INF5150

Version 080926
ICU 0-1



26-Sep-08 INF5150 – Unassailable IT-systems 2

IN
F 5150

Group formation for Oblig 2

While Oblig 1 must be individually solved, Oblig 2 shall be 
achieved in a group of 3-5 persons
Divide the group in
– PhD students and those with a Master already
– Those with INF2120
– Those with special needs
– The rest

Everybody signs up their name on the blackboard in the
appropriate column
The lecturer will select the groups
– and add those that are not present



26-Sep-08 INF5150 – Unassailable IT-systems 3

IN
F 5150

ICU0 – your very first ”I see you” system

surveillance at your fingertips,
first we only observe yourself



26-Sep-08 INF5150 – Unassailable IT-systems 4

IN
F 5150

Agile modeling

”agile”
– = having a quick resourceful and adaptable character

executable models!
very stepwise approach
– each step will have its specification and executable model
– each step should be tested

We shall use one example throughout the course
– with many steps
– intended to be mirrored by the project exercise model

Every week a working program!



26-Sep-08 INF5150 – Unassailable IT-systems 5

IN
F 5150

Manifesto for Agile Software Development

We are uncovering better ways of developing software by 
doing it and helping others do it.
Through this work we have come to value: 
– Individuals and interactions over processes and tools 
– Working software over comprehensive documentation 
– Customer collaboration over contract negotiation 
– Responding to change over following a plan

That is, while there is value in the items on 
the right, we value the items on the left more. 



26-Sep-08 INF5150 – Unassailable IT-systems 6

IN
F 5150

Dialectic Software Development

Software Development is a process of learning
– once you have totally understood the system you are building, it is done

Learning is best achieved through conflict, not harmony
– discussions reveal problematic points
– silence hides critical errors

By applying different perspectives to the system to be designed
– inconsistencies may appear
– and they must be harmonized

Inconsistencies are not always errors!
– difference of opinion
– difference of understanding
– misunderstanding each other
– a result of partial knowledge

Reliable systems are those that have already met challenges



26-Sep-08 INF5150 – Unassailable IT-systems 7

IN
F 5150

Buzzzzz 1: Agility

Join your project group – this is its first assignment!
Give 3 reasons for why agile modeling/programming is a 
good approach
Give 3 possible problems for an agile approach
Give each pro and each con a short name



26-Sep-08 INF5150 – Unassailable IT-systems 8

IN
F 5150

UML Use Cases – very very simple

subject : our system

use case: a service

actor: the outsiders

note: an informal text



26-Sep-08 INF5150 – Unassailable IT-systems 9

IN
F 5150

Use cases in a separate package



26-Sep-08 INF5150 – Unassailable IT-systems 10

IN
F 5150

UML Sequence Diagrams: a more precise way

Interaction

Sequence
diagram

Lifeline

Message

State inv.

Signature



26-Sep-08 INF5150 – Unassailable IT-systems 11

IN
F 5150

Packages, Collaboration, Composite Structure
Package

Collaboration
Composite
structure

Part

Port



26-Sep-08 INF5150 – Unassailable IT-systems 12

IN
F 5150

Run 
validation !

Model-time Consistency!



26-Sep-08 INF5150 – Unassailable IT-systems 13

IN
F 5150

Structure hierarchy

Part

type

Part

type



26-Sep-08 INF5150 – Unassailable IT-systems 14

IN
F 5150

A State Machine defining the whole system

local
variables

State

Initial Decision

Transition

Trigger Effect

Guard

State
machine



26-Sep-08 INF5150 – Unassailable IT-systems 15

IN
F 5150

Papyrus coding for state machines

Trigger of transitions
– Trigger relates to a visible Signal
– Create a Reception in the enclosing class

Associate the Reception to the desired Signal
– In the transition, create a trigger (+) to be a SignalEvent

Choose the appropriate Reception from the menu in the dialogue box

Defer
– Deferrable Triggers are defined in the State where they are 

deferred
Effect of transition
– In the transition add an effect (+)

In the simplest cases this can be just an OpaqueBehavior
Otherwise you may use an Activity

– and an Activity Diagram will be automatically created



26-Sep-08 INF5150 – Unassailable IT-systems 16

IN
F 5150

JavaFrame action language

In principle all java can be used
– but we try only to use simple constructs
– we prefer to use Activity constructs for loops/choices etc.

output (Signal, Port, csm)
– sends a signal through a local port.
– typically the signal is like ”new S(parm1, parm2)”
– typically the port is like ”csm.toSomewhere”
– ”csm” is like a keyword meaning ”current state machine”

To read from the most recent consumed signal, use ”sig”
– sig has been cast to the right type (normally)
– Example: ”sig.parm1” when sig is consumed as object of class S



26-Sep-08 INF5150 – Unassailable IT-systems 17

IN
F 5150

Transition Effect – Activity Diagram

Initial

Opaque
Action with
java code

Control flow

Final



26-Sep-08 INF5150 – Unassailable IT-systems 18

IN
F 5150

Runtime Consistency!



26-Sep-08 INF5150 – Unassailable IT-systems 19

IN
F 5150

Buzzzzz 2: Refinement

Assume that the semantics of the state machine are the
traces that it potentially may produce (given all 
reasonable input from a Mobile) as positive traces and all 
other traces as negative.
Is the state machine ICUprocess a refinement of the
interaction KMLfile?
Is the opposite refinement true? (that KMLfile is a 
refinement of ICUprocess)



26-Sep-08 INF5150 – Unassailable IT-systems 20

IN
F 5150

KML: using GoogleEarth to place mobiles



26-Sep-08 INF5150 – Unassailable IT-systems 21

IN
F 5150

Testing ICU0

by using the UML Testing Profile
with foils also from 

Prof. Dr. Ina Schieferdecker



26-Sep-08 INF5150 – Unassailable IT-systems 22

IN
F 5150

The Problem

Software 
– Increases in complexity, concurrency, and dynamics
– Quality is key

Functionality
Performance
Scalability
Reliability
Usability
Efficiency
Maintainability
... 

Testing is
– Means to obtain objective quality metrics about systems in their target

environment
– Central means to relate requirements and specification to the real system



26-Sep-08 INF5150 – Unassailable IT-systems 23

IN
F 5150

Testing Today

Is
– Important
– Means to obtain approval
– Time critical 

But often
– Rarely practiced
– Unsystematic
– Performed by hand
– Error-prone
– Considered being destructive
– Uncool

„If you are a bad programmer 
you might be a tester“

Conjecture:
There is a lack of appropriate test methods and techniques



26-Sep-08 INF5150 – Unassailable IT-systems 24

IN
F 5150

Testing is …

A technical process

Performed by experimenting with a system

In a controlled environment following a specified
procedure

With the intent of observing one or more characteristics of 
the system

By demonstrating the deviation of the system’s actual
status from the required status/specification.



26-Sep-08 INF5150 – Unassailable IT-systems 25

IN
F 5150

Goals of the UML Testing Profile

Definition of a testing profile to capture all information that would be 
needed by different test processes

– To allow black-box testing (i.e. at UML interfaces) of computational 
models in UML

A testing profile based upon UML 2.0
– That enables the test definition and test generation based on structural

(static) and behavioral (dynamic) aspects of UML models, and
– That is capable of inter-operation with existing test technologies for black-

box testing
Define 

– Test purposes for computational UML models, which should be related to 
relevant system interfaces

– Test components, test configurations and test system interfaces 
– Test cases in an implementation independent manner



26-Sep-08 INF5150 – Unassailable IT-systems 26

IN
F 5150

Test Case

Test Concepts: Black-Box Testing

Stimulus Response

System Under Test
(SUT)

Port

• Assignment
of a
Test Verdict



26-Sep-08 INF5150 – Unassailable IT-systems 27

IN
F 5150

ICU0 test context
test package imports

def of system

System 
Under 
Test

Test component

Test case

Test 
case 

returns

Test configuration



26-Sep-08 INF5150 – Unassailable IT-systems 28

IN
F 5150

Test context and system context are similar



26-Sep-08 INF5150 – Unassailable IT-systems 29

IN
F 5150

Test behavior and context behavior are similar

Verdict Verdict



26-Sep-08 INF5150 – Unassailable IT-systems 30

IN
F 5150

Buzzzz 3: Why both context behavior and tests?

Why do we need tests when we have context behavior
– We do not always only want pass verdicts

we could also use the neg fragments in Sequence Diagrams
– We may want more tests than context behaviors

Tests should be explicit
– Identify the SUT and the Test components

this distinction is not done in the context behavior sequence
diagrams

– Clearly specify the verdicts
context behaviors usually specify potential positive behaviors only



26-Sep-08 INF5150 – Unassailable IT-systems 31

IN
F 5150

How to execute the tests

Generated test components
– we could specify the behavior of the test components
– then compile and run the total test management system
– and have the tool verify the test cases by comparison

Manual execution on real environment
– you operate the mobile phone, and observe the resulting SMSes
– you observe also the GoogleEarth results
– Disadvantage: slow procedure since you need to physically move
– Advantage: it is the real thing

Manual execution on simulated environment
– FakePATS made by Frank Davidsen
– Advantage: quicker turn-around, easier manipulation, cheaper



26-Sep-08 INF5150 – Unassailable IT-systems 32

IN
F 5150

FakePATS instead of low level PATS-software

Replace this with FakePATS

No recompilation
necessary!



26-Sep-08 INF5150 – Unassailable IT-systems 33

IN
F 5150

fakepats.jar is also a stand-alone program!

Actor

Statid ID

Bus 37 routeBus stop

Send SMS 
from actor

Start fakepats,
then application



26-Sep-08 INF5150 – Unassailable IT-systems 34

IN
F 5150

The verdict of the fake mobile



26-Sep-08 INF5150 – Unassailable IT-systems 35

IN
F 5150

Verdict of GoogleEarth



26-Sep-08 INF5150 – Unassailable IT-systems 36

IN
F 5150

About operations and methods

In order to keep the low-level java code away 
from the beautiful symbols of our UML 

models, we may want to separate some of 
the nitty, gritty details in out in chunks



26-Sep-08 INF5150 – Unassailable IT-systems 37

IN
F 5150

We will introduce operations/methods

parsepos

deccoords



26-Sep-08 INF5150 – Unassailable IT-systems 38

IN
F 5150

UML distinguish between operation and method

parsepos – the method

parsepos – the operation


	Agile modeling – for INF5150
	Group formation for Oblig 2
	ICU0 – your very first ”I see you” system
	Agile modeling
	Manifesto for Agile Software Development
	Dialectic Software Development
	Buzzzzz 1: Agility
	UML Use Cases – very very simple
	Use cases in a separate package
	UML Sequence Diagrams: a more precise way
	Packages, Collaboration, Composite Structure
	Model-time Consistency!
	Structure hierarchy
	A State Machine defining the whole system
	Papyrus coding for state machines
	JavaFrame action language
	Transition Effect – Activity Diagram
	Runtime Consistency!
	Buzzzzz 2: Refinement
	KML: using GoogleEarth to place mobiles
	Testing ICU0
	The Problem
	Testing Today
	Testing is …
	Goals of the UML Testing Profile
	Test Concepts: Black-Box Testing
	ICU0 test context
	Test context and system context are similar
	Test behavior and context behavior are similar
	Buzzzz 3: Why both context behavior and tests?
	How to execute the tests
	FakePATS instead of low level PATS-software
	fakepats.jar is also a stand-alone program!
	The verdict of the fake mobile
	Verdict of GoogleEarth
	About operations and methods
	We will introduce operations/methods
	UML distinguish between operation and method

