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INF 5300 Advanced Topic: Video Content Analysis 

Asbjørn Berge 

Observing from a moving platform 
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Demo: Realtime 3D mapping 

• Track features in 

3D data from a 

Kinect to 

simultaneously map 

the surroundings 

and locate the 

camera. 

 

• Fundamentally 

these ideas behind 

autonomous robot 

navigation. 

 



Technology for a better society 

Reading materials and tools 

R. Szeliski: Computer Vision: Algorithms and Applications 

Chapters 4.1, 6.1 and 7.1+7.2, http://szeliski.org/Book/ 

 

David G. Lowe, Distinctive image features from scale-invariant 
keypoints, International Journal of Computer Vision, 60, 2 (2004), pp. 91-
110. [PDF] 

 

M. Zuliani: Ransac for dummies 
http://vision.ece.ucsb.edu/~zuliani/Research/RANSAC/docs/RANSAC4Dummie
s.pdf 

 

Tools 

Ransac toolbox : https://github.com/RANSAC/RANSAC-Toolbox 
VlFeat toolbox : http://www.vlfeat.org 

OpenCV 3D reconstruction: 
http://opencv.itseez.com/modules/calib3d/doc/camera_calibration_and_3d_reconstru
ction.html 
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• Structure from motion 

• Obtain 3D scene structure from 

multiple images from the same 

camera in different locations, 

poses 

• Typically, camera location & pose 

treated as unknowns 

• Track points across frames, infer 

camera pose & scene structure 

from correspondences 

 

• Simultaneous Location And Mapping 

(SLAM) 

• Localize a robot and map its 

surroundings with a single camera 

 

4 

Inferring 3D 
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3D Reconstruction 

Internet Photos (“Colosseum”) Reconstructed 3D cameras and points 

http://photosynth.net/default.aspx 

http://phototour.cs.washington.edu/applet/index.html 

http://photosynth.net/default.aspx
http://phototour.cs.washington.edu/applet/index.html
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Some panorama examples 

• Every image on Google Streetview 



Technology for a better society 

Why extract features? 

• Motivation: panorama stitching 

– We have two images – how do we combine them? 
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Why extract features? 

• Motivation: panorama stitching 

– We have two images – how do we combine them? 

Step 1: extract features 
Step 2: match features 
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Why extract features? 

• Motivation: panorama stitching 

– We have two images – how do we combine them? 

Step 1: extract features 
Step 2: match features 
Step 3: align images 
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Local invariant features: outline 

1) Detection: Identify the 

interest points 
 

2) Description: Extract vector 

feature descriptor 

surrounding each interest 

point. 
 

3) Matching: Determine 

correspondence between 

descriptors in two views 

],,[ )1()1(
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Computing transformations 

• Given a set of matches between images A and B 

– How can we compute the transform T from A to B? 

 

 

 

 

 

 

 

– Find transform T that best “agrees” with the matches 
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Feature matching example 

58 matches 
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Evaluating the results 

How can we measure the performance of a feature matcher? 

50 

75 

200 

feature distance 
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True/false positives 

 

 

 

 

 

 

 

 

 

The distance threshold affects performance 

– True positives = # of detected matches that are correct 

• Suppose we want to maximize these—how to choose threshold? 

– False positives = # of detected matches that are incorrect 

• Suppose we want to minimize these—how to choose threshold? 

50 

75 

200 false match 

true match 

feature distance 

How can we measure the performance of a feature matcher? 
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Structure from motion 

Camera 1 

Camera 2 

Camera 3 

R1,t1 

R2,t2 

R3,t3 

p1 

p4 

p3 

p2 

p5 

p6 

p7 

minimize 

f (R, T, P) 
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SfM objective function 

• Given point x and rotation and translation R, t 

 

 

 

 

 

 

• Minimize sum of squared reprojection errors: 

  

    

predicted  
image location 

observed 
image location 
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Simple case: translations 

How do we solve for 
                    ?  
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Mean displacement =    

Simple case: translations 

Displacement of match i  = 
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Another view 

• System of linear equations 

– What are the knowns?  Unknowns? 

– How many unknowns?  How many equations (per match)? 
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Another view 

• Problem: more equations than unknowns 
– “Overdetermined” system of equations 

– We will find the least squares solution 
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Least squares formulation 

• For each point 

 

 

 

 

 

• we define the residuals as  
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Least squares formulation 

• Goal: minimize sum of squared residuals 

 

 

 

 

• “Least squares” solution 

• For translations, is equal to mean displacement 



Technology for a better society 

Least squares formulation 

• Can also write as a matrix equation 

2n x 2 2 x 1 2n x 1 
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Least squares 

• Find t that minimizes  

 

 

• To solve, form the normal equations 
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Projection matrix 

(t in book’s notation) 

translation rotation projection 

intrinsics 
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Projection matrix 

0 

= 

(in homogeneous image coordinates) 
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Why Mosaic? 

• Are you getting the whole picture? 

– Compact Camera FOV = 50 x 35° 

– Human FOV                = 200 x 135° 

– Panoramic Mosaic        = 360 x 180° 
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Projective Transformations aka Homographies 

aka Planar Perspective Maps 

Called a homography  
(or planar perspective map) 

projection of 3D plane can be explained by a (homogeneous) 2D transform 
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Image warping with homographies 

 

 

image plane in front image plane below black area 

where no pixel 

maps to 
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Homographies 

• Homographies … 

– Affine transformations, and 

– Projective warps 

 

• Properties of projective transformations: 

– Origin does not necessarily map to origin 

– Lines map to lines 

– Parallel lines do not necessarily remain parallel 

– Ratios are not preserved 

– Closed under composition 
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2D image transformations 

These transformations are a nested set of groups 
• Closed under composition and inverse is a member 
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Geometric interpretation of mosaics 

0 

1 

2 
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Geometric Interpretation of Mosaics 

• If we capture all 360º of rays, we can create a 360º panorama 

•  The basic operation is projecting an image from one plane to another 

•  The projective transformation is scene-INDEPENDENT 

• This depends on all the images having the same optical center 
• http://archive.bigben.id.au/tutorials/360/photo/nodal.html 

Image 1 

Image 2 

Optical Center 

http://archive.bigben.id.au/tutorials/360/photo/nodal.html
http://archive.bigben.id.au/tutorials/360/photo/nodal.html
http://archive.bigben.id.au/tutorials/360/photo/nodal.html
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Projecting images onto a common plane 

mosaic PP 
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What is the transformation? 

Image 1 

Image 2 

Optical Center 

How do we transform image 2 onto image 
1’s projection plane? 

image 1 image 2 

3x3 homography 

image coords 
 (in image 2) 

3D ray coords 
 (in camera 2) 

image coords 
 (in image 2) 

3D ray coords 
 (in camera 1) 

image coords 
 (in image 2) 

image coords 
 (in image 1) 
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Image alignment 
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Image alignment 
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Affine transformations 

• How many unknowns? 

• How many equations per match? 

• How many matches do we need? 
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Affine transformations 

• Residuals: 

 

 

 

• Cost function: 
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Affine transformations 

• Matrix form 

2n x 6 6 x 1 2n x 1 
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Homographies 

 

 

To unwarp (rectify) an image 
• solve for homography H given p and p’ 

• solve equations of the form:  wp’ = Hp 

– linear in unknowns:  w and coefficients of H 

– H is defined up to an arbitrary scale factor 

– how many points are necessary to solve for H? 

p 
p’ 
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Image Alignment Algorithm 

Given images A and B 

 

1. Compute image features for A and B 

2. Match features between A and B 

3. Compute homography between A and B using 
least squares on set of matches 

 

What could go wrong? 
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Robustness 
outliers 
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Robustness 

• Let’s consider a simpler example… 

 

 

 

 

 

 

 

• How can we fix this? 

Problem: Fit a line to these datapoints Least squares fit 
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Idea 

• Given a hypothesized line 

• Count the number of points that “agree” with the line 

– “Agree” = within a small distance of the line 

– I.e., the inliers to that line 

 

• For all possible lines, select the one with the largest number of inliers 
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Counting inliers 
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Counting inliers 

Inliers: 3 
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Counting inliers 

Inliers: 20 
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How do we find the best line? 

 

• Unlike least-squares, no simple closed-form solution  

 

• Hypothesize-and-test 

– Try out many lines, keep the best one 

– Which lines? 
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Translations 
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RAndom SAmple Consensus 

Select one match at random, count inliers 
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RAndom SAmple Consensus 

Select another match at random, count inliers 
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RAndom SAmple Consensus 

Output the translation with the highest number of inliers 
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RANSAC 

• Idea: 

– All the inliers will agree with each other on the 

translation vector; the (hopefully small) number of 

outliers will (hopefully) disagree with each other 

• RANSAC only has guarantees if there are < 50% 

outliers 

 

– “All good matches are alike; every bad match is bad 

in its own way.” 

    – Tolstoy via Alyosha Efros 
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RANSAC 

• Inlier threshold related to the amount of noise we 

expect in inliers 

– Often model noise as Gaussian with some standard deviation 

(e.g., 3 pixels) 

• Number of rounds related to the percentage of outliers 

we expect, and the probability of success we’d like to 

guarantee 

– Suppose there are 20% outliers, and we want to find the correct 

answer with 99% probability  

– How many rounds do we need? 
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RANSAC 

x translation 

y translation 

set threshold so that, e.g., 
95% of the Gaussian 
lies inside that radius 
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RANSAC 

• Back to linear regression 

• How do we generate a hypothesis? 

x 

y 
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RANSAC 

x 

y 

• Back to linear regression 

• How do we generate a hypothesis? 
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RANSAC 

• General version: 

1. Randomly choose s samples 

• Typically s = minimum sample size that lets you fit a model 

2. Fit a model (e.g., line) to those samples 

3. Count the number of inliers that approximately fit the 

model 

4. Repeat N times 

5. Choose the model that has the largest set of inliers 
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How many rounds?  

• If we have to choose s samples each time 

– with an outlier ratio e 

– and we want the right answer with probability p 

proportion of outliers e 
s 5% 10% 20% 25% 30% 40% 50% 
2 2 3 5 6 7 11 17 
3 3 4 7 9 11 19 35 
4 3 5 9 13 17 34 72 
5 4 6 12 17 26 57 146 
6 4 7 16 24 37 97 293 
7 4 8 20 33 54 163 588 
8 5 9 26 44 78 272 1177 

p = 0.99 
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How big is s? 

• For alignment, depends on the motion model 

– Here, each sample is a correspondence (pair of matching points) 
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Final step: least squares fit 

Find average translation vector over all inliers 
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Choosing the parameters 

• Initial number of points s 
– Typically minimum number needed to fit the model 

• Distance threshold t 
– Choose t so probability for inlier is p (e.g. 0.95)  

– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2 

• Number of samples N 
– Choose N so that, with probability p, at least one random sample 

is free from outliers (e.g. p=0.99) (outlier ratio: e) 

    s
epN  11log/1log

   pe
Ns

 111

proportion of outliers e 

s 5% 10% 20% 25% 30% 40% 50% 

2 2 3 5 6 7 11 17 

3 3 4 7 9 11 19 35 

4 3 5 9 13 17 34 72 

5 4 6 12 17 26 57 146 

6 4 7 16 24 37 97 293 

7 4 8 20 33 54 163 588 

8 5 9 26 44 78 272 1177 
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RANSAC conclusions 
Good 

• Robust to outliers 

• Applicable for larger number of parameters than Hough transform 

• Parameters are easier to choose than Hough transform 
 

Bad 

• Computational time grows quickly with fraction of outliers and 

number of parameters  

• Not good for getting multiple fits 

 

Common applications 

• Computing a homography (e.g., image stitching) 

• Estimating fundamental matrix (relating two views) 
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VLFeat demo of Ransac Homography fit  

 
335 tentative matches

209 (62.39%) inliner matches out of 335

Mosaic
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Feature extraction: Corners and blobs 
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Invariant local features 

Find features that are invariant to transformations 

– geometric invariance:  translation, rotation, scale 

– photometric invariance:  brightness, exposure, … 

Feature Descriptors 
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Advantages of local features 

Locality  

– features are local, so robust to occlusion and clutter 

Quantity 

– hundreds or thousands in a single image 

Distinctiveness:  

– can differentiate a large database of objects 

Efficiency 

– real-time performance achievable 
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Local measures of uniqueness 

Suppose we only consider a small window of pixels 

– What defines whether a feature is a good or bad 

candidate? 
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Local measure of feature uniqueness 

“flat” region: 
no change in all 
directions 

“edge”:   
no change along the 
edge direction 

“corner”: 
significant change in 
all directions 

• How does the window change when you shift it? 

• Shifting the window in any direction causes a big 
change 
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Consider shifting the window W by (u,v) 

• how do the pixels in W change? 

• compare each pixel before and after by 
summing up the squared differences (SSD) 

• this defines an SSD “error” E(u,v): 

 

Harris corner detection:  the math 

W 
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Taylor Series expansion of I: 

 

 

If the motion (u,v) is small, then first order approximation is good 

 

 

 

 

 

 

 

Plugging this into the formula on the previous slide… 

 

Small motion assumption 
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Corner detection:  the math 

Consider shifting the window W by (u,v) 

• define an SSD “error” E(u,v): 

 

W 
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Corner detection:  the math 

Consider shifting the window W by (u,v) 

• define an SSD “error” E(u,v): 

 

W 

• Thus, E(u,v) is locally approximated as a quadratic error function 
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The surface E(u,v) is locally approximated by a quadratic form.  

The second moment matrix 

Let’s try to understand its shape. 
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Horizontal edge:  

u 
v 

E(u,v) 
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Vertical edge:  

u 
v 

E(u,v) 
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General case 

We can visualize H as an ellipse with axis lengths 
determined by the eigenvalues of H and orientation 
determined by the eigenvectors of H 

 

direction of the 
slowest change 

direction of the 
fastest change 

(max)
-1/2 

(min)
-1/2 

const][ 








v

u
Hvu

Ellipse equation: 
max, min : eigenvalues of H 
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Corner detection:  the math 

Eigenvalues and eigenvectors of H 

• Define shift directions with the smallest and largest change in error 

• xmax = direction of largest increase in E 

• max = amount of increase in direction xmax 

• xmin = direction of smallest increase in E  

• min = amount of increase in direction xmin 

 

 xmin 

 xmax 
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Corner detection:  the math 
How are max, xmax, min, and xmin relevant for feature detection? 

• What’s our feature scoring function? 

Want E(u,v) to be large for small shifts in all directions 

• the minimum of E(u,v) should be large, over all unit vectors [u v] 

• this minimum is given by the smaller eigenvalue (min) of H 
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Interpreting the eigenvalues 

1 

2 

“Corner” 

1 and 2 are large, 

 1 ~ 2; 

E increases in all 

directions 

1 and 2 are small; 

E is almost constant 

in all directions 

“Edge”  

1 >> 2 

“Edge”  

2 >> 1 

“Flat” 

region 

Classification of image points using eigenvalues of M: 
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Corner detection summary 

• Compute the gradient at each point in the image 

• Create the H matrix from the entries in the gradient 

• Compute the eigenvalues.  

• Find points with large response (min > threshold) 

• Choose those points where min is a local maximum as features 

 



Technology for a better society 

Corner detection summary 

• Compute the gradient at each point in the image 

• Create the H matrix from the entries in the gradient 

• Compute the eigenvalues.  

• Find points with large response (min > threshold) 

• Choose those points where min is a local maximum as features 
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The Harris operator 

min is a variant of the “Harris operator” for feature detection 

 

 

 

 

 

 

 

• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22 

• Very similar to min but less expensive (no square root) 

• Called the “Harris Corner Detector” or “Harris Operator” 

• Lots of other detectors, this is one of the most popular 



Technology for a better society 

The Harris operator 

Harris  
operator 
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Harris Detector – Responses [Harris88] 
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Weighting the derivatives 

• In practice, using a simple window W doesn’t work too well 

 

 

 

 

• Instead, we’ll weight each derivative value based on its distance from the 

center pixel 
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Harris Detector: Invariance Properties 
• Rotation 

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same 

Corner response is invariant to image rotation 



Technology for a better society 

Harris Detector: Invariance Properties 
• Affine intensity change: I  aI + b 

 Only derivatives are used =>                           
 invariance to intensity shift I  I + b 

 Intensity scale: I  a I 

R 

x (image coordinate) 

threshold 

R 

x (image coordinate) 

Partially invariant to affine intensity change 
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Harris Detector: Invariance Properties 

• Scaling 

All points will be 
classified as edges 

Corner 

Not invariant to scaling 
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Scale invariant detection 

Suppose you’re looking for corners 

 

 

 

 

 

 

 

Key idea:  find scale that gives local maximum of f 
– in both position and scale 

– One definition of f : the Harris operator 
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Automatic Scale Selection 

)),((      )),((
11

  xIfxIf
mm iiii 

Same operator responses if the patch contains the same image up to 

scale factor. How to find corresponding patch sizes? 



Technology for a better society 

Automatic Scale Selection 

)),((
1

xIf
mii 

)),((
1

xIf
mii




• Function responses for increasing scale (scale signature)  
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Automatic Scale Selection 

• Function responses for increasing scale (scale signature)  

 

)),((
1

xIf
mii 

)),((
1

xIf
mii



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• Function responses for increasing scale (scale signature)  

 

Automatic Scale Selection 

)),((
1

xIf
mii 

)),((
1

xIf
mii



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• Function responses for increasing scale (scale signature)  

 

Automatic Scale Selection 

)),((
1

xIf
mii 

)),((
1

xIf
mii



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Automatic Scale Selection 

)),((
1

xIf
mii 

)),((
1

xIf
mii




• Function responses for increasing scale (scale signature)  
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Automatic Scale Selection 

)),((
1

xIf
mii 

)),((
1

 xIf
mii 

• Function responses for increasing scale (scale signature)  
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Implementation 

• Instead of computing f for larger and larger windows, we can implement using 

a fixed window size with a Gaussian pyramid 

(sometimes need to create in-
between levels, e.g. a ¾-size image) 
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Another common definition of f 

• The Laplacian of Gaussian (LoG)  

2

2

2

2
2

y

g

x

g
g











(very similar to a Difference of Gaussians (DoG) – 
i.e. a Gaussian minus a slightly smaller Gaussian) 
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Laplacian of Gaussian 

• “Blob” detector 

 

• Find maxima and minima of LoG operator in space and scale 

* = 

maximum 

minima 
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Scale selection 

• At what scale does the Laplacian achieve a maximum response for a binary 

circle of radius r? 

r 

image Laplacian 
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Characteristic scale 

• We define the characteristic scale as the scale that produces peak of 

Laplacian response 

characteristic scale 

T. Lindeberg (1998). "Feature detection with automatic scale selection." 
International Journal of Computer Vision 30 (2): pp 77--116.  

http://www.nada.kth.se/cvap/abstracts/cvap198.html
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Scale-space blob detector: Example 
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Scale-space blob detector: Example 
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Scale-space blob detector: Example 
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Scale Invariant Feature Transform (SIFT) 

16 histograms x 8 orientations  

             = 128 features 

1. Take a 16 x16 window around interest point 

(i.e., at the scale detected). 

2. Divide into a 4x4 grid of cells.  

3. Compute histogram of image gradients in each 

cell (8 bins each). 
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SIFT Computation – Steps 

(1) Scale-space extrema detection 

– Extract scale and rotation invariant interest points (i.e., keypoints).  

(2) Keypoint localization 

– Determine location and scale for each interest point. 

– Eliminate “weak” keypoints 

(3) Orientation assignment 

– Assign one or more orientations to each keypoint. 

(4) Keypoint descriptor 

– Use local image gradients at the selected scale. 

D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, International Journal  

of Computer Vision, 60(2):91-110, 2004.  
Cited 13629 times  (as of 17/4/2012) 
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Scale-space Extrema Detection 

• Harris-Laplace 
 

• Find local maxima of: 

– Harris detector in space  

– LoG in scale 

scale 

x 

y 

 Harris  


 L

o
G

 
 

• SIFT  
 

Find local maxima of: 

– Hessian in space  

– DoG in scale 

scale 

x 

y 

   Hessian   


 D

o
G

 
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Scale-space Extrema Detection 

• DoG images are grouped by octaves (i.e., doubling of σ0) 

• Fixed number of levels per octave 

 
 

 

σ0 

2σ0 

22σ0 

( , , )

( , , )* ( , )

L x y

G x y I x y







( , , )

( , , ) ( , , )

D x y

L x y k L x y



 





down-sample 
where 
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Scale-space Extrema Detection 

• Extract local extrema (i.e., minima or maxima) in DoG 

pyramid. 
-Compare each point to its 8 neighbors at the same level, 9 

neighbors in the level above, and 9 neighbors in the level below (i.e., 

26 total). 
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Keypoint Localization 

 

• Determine the location and scale 

of keypoints to sub-pixel and 

sub-scale accuracy by fitting a 

3D quadratic polynomial: 
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offset  

keypoint 

location 

sub-pixel, sub-scale  

Estimated location 

Substantial 

improvement to 

matching and stability! 
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Keypoint Localization 

 

• Use Taylor expansion to locally approximate D(x,y,σ) (i.e., 

DoG function) and estimate Δx: 

 

 

 

• Find the extrema of D(ΔX): 
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Keypoint Localization 
 

 

 

 

• ΔX can be computed by solving a 3x3 linear system: 
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Keypoint Localization 

• Reject keypoints having low contrast. 

– i.e., sensitive to noise 

If                                         reject keypoint 

– i.e., assumes that image values have been normalized in 

[0,1]  

| ( ) | 0.03iD X X 
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Keypoint Localization 

• Reject points lying on edges (or being close to edges) 

 

• Harris uses the auto-correlation matrix: 
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        R(AW) = det(AW) – α trace2(AW) 

 

 or        R(AW) = λ1 λ2- α (λ1+ λ2)
2 
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Keypoint Localization 

• SIFT uses the Hessian matrix (for efficiency). 

– i.e., Hessian encodes principal curvatures 

 

 α: largest eigenvalue (λmax) 

β: smallest eigenvalue (λmin) 
(proportional to principal curvatures) 

(SIFT uses r = 10) 

(r = α/β) 

Reject keypoint if: 
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Keypoint Localization  

(a) 233x189 image 

 

(b) 832 DoG extrema 

 

(c) 729 left after low  

contrast  threshold 

 

(d) 536 left after testing 

 ratio based on Hessian 
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Orientation Assignment 

• Create histogram of gradient directions, within a region 

around the keypoint, at selected scale: 
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36 bins (i.e., 10o per bin) 

• Histogram entries are weighted by (i) gradient magnitude and (ii) a 

Gaussian function with σ  equal to 1.5 times the scale of the keypoint. 

0 2 p 
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Orientation Assignment 

• Assign canonical orientation at peak of smoothed histogram (fit parabola to 

better localize peak). 

 

 

 

 

 

 

• In case of peaks within 80% of highest peak, multiple orientations assigned 

to keypoints.  

– About 15% of keypoints has multiple orientations assigned. 

– Significantly improves stability of matching. 

0 2 p 
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Keypoint Descriptor 

8 bins 
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 Keypoint Descriptor 

16 histograms x 8 orientations  

             = 128 features 

1. Take a 16 x16 

window 

around 

detected 

interest point. 

 

2. Divide into a 

4x4 grid of 

cells. 

 

3. Compute 

histogram in 

each cell. 

(8 bins) 
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Keypoint Descriptor 

• Each histogram entry is weighted by (i) gradient 

magnitude and (ii) a Gaussian function with σ  equal to 

0.5 times the width of the descriptor window. 
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Keypoint Descriptor 

• Partial Voting: distribute histogram entries into adjacent 

bins (i.e., additional robustness to shifts) 

– Each entry is added to all bins, multiplied by a weight of 1-d,  

 where d is the distance from the bin it belongs. 
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Properties of SIFT 

Extraordinarily robust matching technique 

– Can handle changes in viewpoint 

• Up to about 60 degree out of plane rotation 

– Can handle significant changes in illumination 

• Sometimes even day vs. night (below) 

– Fast and efficient—can run in real time 

– Lots of code available 
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT  

NASA Mars Rover 
images 

with SIFT feature 
matches 

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT
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SIFT Example 

sift 

868 SIFT features 
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Local Descriptors: SURF 

131 

• Fast approximation of SIFT idea 
 Efficient computation by 2D box filters 

& integral images 

 6 times faster than SIFT 

 Equivalent quality for object 

identification 

[Bay, ECCV’06], [Cornelis, CVGPU’08] 

• GPU implementation available 
 Feature extraction @ 100Hz 

(detector + descriptor, 640×480 img) 

 http://www.vision.ee.ethz.ch/~surf 
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Main points of this lecture 

• Moving the same camera restricts the geometry allowing inference 

about 3D 

Potential uses range from mosaicing to egomotion estimation 

– In principle the same mechanism that human depth perception is based 

on 

• Learn the RANSAC algorithm and understand why it works 

– Simple, fast algorithm applicable in very many tasks 

– Important part of your toolbox 

• Grasp the concept of scale-invariant features 

– Example: SIFT algorithm (location and description) 

• Geometry and image transforms is out of scope for this course 

– But part of INF 2310 – so you know all this! 
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Properties of SIFT 

• Highly distinctive 

– A single feature can be correctly matched with high probability 

against a large database of features from many images. 

• Scale and rotation invariant. 

• Partially invariant to 3D camera viewpoint 

– Can tolerate up to about 60 degree out of plane rotation 

• Partially invariant to changes in illumination 

• Can be computed fast and efficiently. 

 


