INF 5300
Feature selection and principal component
analysis

Anne Solberg (anne@ifi.uio.no)
Today:
» Feature normalization
* Feature selection

* Feature transformation through principal
component analysis

Next lecture:

. Fisher’s linear discriminant function
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Curriculum

e The lecture is based on the following sections from
"Pattern Recognition” by S. Theodoridis and K.
Koutroumbas:

5.1

5.2.2 Feature normalization

5.5.3 Scatter matrices

5.6 Feature subset selection

5.7 Fisher’s linear discriminant function (next lecture)
6.1-6.3 Principal component analysis
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Reminder - Basic classification principles

Classification task:
» Classify object X = X, %} to one of the R classes @y)...0
» Decision rule d(x)=w, divides the feature space into R
disjoint subsets K, r=1,...R.
e The borders between subsets K., r=1,...R are defined by R
scalar discrimination functions g,(X),....gg(X)
e The discrimination functions must satisfy:
9,(X)=g.(x), s=r, for all xeK,
e Discrimination hypersurfaces are thus defined by
gr(x)'gs(x):O
e The pattern x will be classified to the class whose
discrimination function gives a maximum:
d(X)=w, < g,(x) = max gy(x)
s=1,..R

INF 5300

Reminder - Bayesian classification

Prior probabilities P(w,) for each class

Bayes classification rule: classify a pattern x to the
class with the highest posterior probability P(w,|X)

P(o,]Xx) = max P(o|X)
s=1,..R

P(w]|X) is computed using Bayes formula
P(Ct) |X)= p(X|a)s)P(a)s)
) p(x)

P00 =3 pix|0)P(@)

p(X] »,) is the class-conditional probability density

for a given class.
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Reminder - Classification with Gaussian

distributions

e Probability distribution for n-dimensional Gaussian vector:

-y (= em )

1
p(x|lw,) = 5 eXp
(zﬂ)dlz‘zs‘

A 1 M, . ~ N\t
Z:s :M_Zm=l(xm — M )(Xm _/us)
where the sum is over all training samples belonging to class s

* p,and Z, are not known, but they are estimated from M training
samples as the Maximum Likelihood estimates
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The curse of dimensionality

e Assume we have S classes and a n-dimensional feature vector.

e With a fully multivariate Gaussian model, we must estimate S
different mean vectors and S different covariance matrices
from training samples.

4, has n elements
%, has n(n-1)/2 elements

= Assume that we have M, training samples from each class

e Given M., there is a maximum of the achieved classification
performance for a certain value of n (increasing n beyond this
limit will lead to worse performance after a certain).

e Adding more features is not always a good idea!

e |If we have limited training data, we can use diagonal covariance
matrices or regularization.
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How do we beat the "curse of dimensionality”?

e Use regularized estimates for the Gaussian case
— Use diagonal covariance matrices
— Apply regularized covariance estimation

e Generate few, but informative features
— Careful feature design given the application

e Reducing the dimensionality
— Feature selection
— Feature transforms
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Regularized covariance matrix estimation

e Let the covariance matrix be a weighted combination of a class-
specific covariance matrix ¥, and a common covariance matrix
pIN

(1-a)n, +an

2k(O‘):

der 0<a<1 must be determined, and 77, and »nis the number of
training samples for class & and overall.

e Alternatively:

Zk(ﬂ): (1_ﬁ)zk + /4l

where the parameter 0<p<1 must be determined.

INF 5300




Feature selection

e Given a large set of N features, how do we select the
best subset of m features?
— How do we select m?

— Finding the best combination of m features out a N possible
Is a large optimization problem.

— Full search is normally not possible.
— Suboptimal approaches are often used.
— How many features are needed?

e Alternative: compute lower-dimensional projections
of the N-dimensional space
— PCA
— Fisher’s linear discriminant

— Projection pursuit and other non-linear approaches
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Preprocessing - data normalization

e Features may have different ranges
— Feature 1 has range f1,-f1, ..
— Feature n has range fn,-fn, ..

— This does not reflect their significance in classification
performance!

— Example: minimum distance classifier uses Euclidean
distance
e Features with large absolute values will dominate the classifier
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Feature normalization

» Normalize all features to have the same mean and variance.
e Data set with N objects and K features
e Features x;, i=1...N, k=1,...K

Zero mean, unit variance: Softmax (non-linear)
1N
Xy :Nzxik a
i=i Xik — Xk
y =
N ro
2_ 1 o2 k
o = > (Xik = %) 1
N _1i=i )A(ik :1—
o + exp(—
o X=X p(=Y)
ik —
Ok

Remark: normalization may destroy important discrimination
information
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Feature selection

How do we find the best subset of m out Training data |
Of n features' Complete feature set
Search strategy h 4
— Exhaustive search |mpI|es(m> if we fix m [Feat“fe SRR 39'90“0"\
and 27 if we need to search all possible m
Search
as well. "
— Choosing 10 out of 100 will result in 10%3 Feature Information
. subset content
queries to J v
— Obviously we need to guide the search! ?Sﬂ]i%t;e
Objective function (J) \_ J

— "Predict” classifier performance
— Decides how good a subset if

[
algorithm
Note that (T}:m' ’

I'(m—1)!

Final feature subset
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Distance measures (to specify J)

e Between two classes:
— Distance between the closest two points?
— Maximum distance between two points?
— Distance between the class means?
— Average distance between points in the two classes?
— Which distance measure?

e Between K classes:
— How do we generalize to more than two classes?
— Average distance between the classes?
— Smallest distance between a pair of classes?

Note: Often performance should be evalued in terms of
classification error rate (e.g. on the training set or on

a validation set)
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Class separability measures

e How do we get an indication of the separability
between two classes?
— Euclidean distance |p,- pl

— Bhattacharyya distance
e Can be defined for different distributions
e For Gaussian data, it is

(zr+zs)(

= e[z

A
1 . o+2 1
B =§(,ur _/JS)T[%] (;ur _ﬂs)+5|n

— Mahalanobis distance between two classes:

A=y — 1) =7 — p13)
2 = lel + szz
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Divergence

Divergence (see 5.5 in Theodoridis and
Koutroumbas) is a measure of distance between
probability density functions.

Mahalanobis distance is a form of divergence
measure.

The Bhattacharrya distance is related to the Chernoff
bound for the lowest classification error.

If two classes have equal variance X,=%,, then the
Bhattacharrya distance is proportional to the
Mahalanobis distance.
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Selecting individual features

Each feature is treated individually (no correlation between
features)

Select a criteria, e.g. a distance measure

Rank the feature according to the value of the criteria C(k)
Select the set of features with the best individual criteria value
Multiclass situations:

— Average class separability or
— C(k) = min distance(i,j) - worst case «— Often used
Advantage with individual selection: computation time
Disadvantage: no correlation is utilized.
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Individual feature selection cont.

e We can also include a simple measure of feature correlation.
 Cross-Correlation between feature i and j: (|p;|<1)

N
Zn 1Xn|an

Z X”'Zn lan

Pij

e Simple algorithm:

— Select C(k) and compute for all x,, k=1,...m. Rank in
descending order and select the one with best value. Call
this x;, .

— Compute the cross-correlation between x;; and all other
features. Choose the feature x;, for which

i, = argmax{ayC () — g oy ffor all j =iy
J

— Select x;, k=3,...| so that
I _argmax{oqC(j) Z p,lj}forall J#h
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Sequential backward selection

Example: 4 features X;,X,,X3,X4

Choose a criterion C and compute it for the vector
[X1,X2,X3,X,]"

Eliminate one feature at a time by computing
[X1.X0:Xal"s [X1,X0:Xal s [X1:X5,X,]" @nd [X;,X3,X,]"

Select the best combination, say [X;,X,,X3]".

From the selected 3-dimensional feature vector

eliminate one more feature, and evaluate the

criterion for [x;,%,]7, [X;, %3], [X2:X3]" and select the

one with the best value.

Number of combinations searched:
1+1/2((m+1)m-I(1+1))
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Sequential forward selection

e Compute the criterion value for each feature. Select the
feature with the best value, say x;.
e Form all possible combinations of features x1 (the winner at

the previous step) and a new feature, e.g. [X;,X,]7, [X4,X5]",
[x1,%,]7, etc. Compute the criterion and select the best one,

say [X;,X3]".
e Continue with adding a new feature.

e Number of combinations searched: Im-I(l-1)/2.
— Backwards selection is faster if | is closer to m than to 1.

INF 5300 19

Plus-L Minus-R Selection (LRS)

If L > R, LRS starts from the empty set and repeatedly adds L
features and removes R features

It L < R, LRS starts from the full set and repeatedly removes R
features followed by L feature additions

Algorithm

1. If L > R then start with the empty set Y = ) else start with
the full set Y = X goto step 3

2. Repeat SFS step L times
3. Repeat SBS step R times

4. Goto step 2

LRS attempts to compensate for weaknesses in SFS and SBS by
backtracking
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Bidirectional Search (BDS)

e Bidirectional Search is a parallel implementation of SFS and
SBS

o SFS is performed from the empty set
o SBS is performed from the full set

e To guarantee that SFS and SBS converge to the same
solution, we must ensure that

o Features already selected by SFS are not removed by SBS

o Features already removed by SBS are not selected by SFS

o For example, before SFS attempts to add a new feature, it
checks if it has been removed by SBS and, if it has, attempts
to add the second best feature, and so on. SBS operates in a
similar fashion
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Floating search methods

e Problem with backward selection: if one feature is excluded, it
cannot be considered again.

e Floating methods can reconsider features previously discarded.

e Floating search can be defined both for forward and backward
selection, here we study forward selection.

* Let X,={X{,X,,...,X} be the best combination of the k features
and Y, the remaining m-k features.

» At the next step the k+1 best subset X, ,is formed by
‘borrowing’ an element from Y.

e Then, return to previously selected lower dimension subset to
check whether the inclusion of this new element improves the
criterion.

e |If so, let the new element replace one of the previously selected
features.
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Algorithm for floating search

e Step I: Inclusion

Xgrr=argmax, .vm KC({X,y}) (choose the element from Y,
that has best effect of C when combined with X,).

Set Xer1= X Xira}-

e Step Il: Test

1. X=argmax,.y,.,C({Xc1-y}) (Find the feature with the
least effect on C when removed from X, ,)

2. If r=k+1, change k=k+1 and go to step |I.

3. If r=k+1 AND C({X,.1-X.})<C(X,), goto step I. (If removing

X, did not improve the cost, no further backwards
selection)
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Algorithm cont.

e Step Ill: Exclusion
1.X/ =X, 17X, (remove x,)

2.xs= argmax, .x C({X,’-y}) (find the least significant feature
in the new set.)

3.1f C(X,/'- X.)<C(X,.,) then X,= X,’ and goto step I.
4.Put X, ;'=X,/-X; and k=Kk-1.

5.1f k=2, put X=X, and C(X,)=C(X,’) and goto step I.
6.Goto step IlI.

Floating search often yields better performance than
sequential search, but at the cost of increased
computational time.
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Optimal searches and randomized methods

o |f the criterion increases monotonically
J(xi1) < J(Xi1, xi2) < J(Xi1, X2, -+ - Xin), One can use

graph-theoretic methods to perform effective subset searches.
(I.e. branch and bound or dynamic programming)

@ Randomized methods are also popular, examples would be
sequential searching with random starting subsets, simulated
annealing (a random subset permutation where the
randomness cools off) or genetic algorithms.
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Sequential Floating Search (SFFS and SFBS)

@ Extension to the LRS algorithms with flexible backtracking
capabilities

@ Rather than fixing the values of L and R, these floating
methods allow those values to be determined from the data:
The size of the subset during the search can be thought to be
" ‘floating”’

e Sequential Floating Forward Selection (SFFS) starts from the
empty set

o After each forward step, SFFS performs backward steps as
long as the objective function increases

@ Sequential Floating Backward Selection (SFBS) starts from

the full set

e After each backward step, SFBS performs forward steps as
long as the objective function increases
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Feature transforms

e We now consider computing new features as linear
combinations of the existing features.

e From the original feature vector x, we compute a
new vector y of transformed features
y=ATx
y is I-dimensional, x is m-dimensional, A is a Ixm matrix.

e yis normally defined in such a way that it has lower
dimension than x.
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Vector spaces

@ A set of vectors up, up, ... u, is said to form a basis for a
vector space if any arbitrary vector x can be represented by a
linear combination x = aju; + a2t + ... a,U,

o The coefficients ay. ay,...a, are called the components of

vector x with respect to the basis v;
o In order to form a basis, it is necessary and sufficient that the

u; vectors be linearly independent

, L .7 ) #F0 i=j
o A basis u; is said to be orthogonal if u; uj = { —0 i
, L : =1 1=y
T, —
o A basis uj is said to be orthonormal if uj uj = 4 _ 0 i#j
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Linear transformation

@ A linear transformation is a mapping from a vector space XV

onto a vector space Y

. and is represented by a matrix

o Given a vector x € X", the corresponding vector y on YM is

)41
Yo

Ym

d11
d21

| 9m1

- X1
a11 e d1n X
a29 ce . d2n
Idmi .-+ dmn | '
Xn
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Eigenvalues and eigenvectors

Given a matrix Ay, we say that v is an eigenvector if there

exists a scalar A (the eigenvalue) such that Av = Av & v is
an eigenvector with corresponding eigenvalue A

Av=Av= (A-AN)v=0=

(A=A =0= AN 4 a2V 14 ay_iA+a,=0

N

Characteristic equation

Zeroes of the characteristic equation are the eigenvalues of A
Ais non-singular < all eigenvalues are non-zero

Ais real and symmetric < all eigenvalues are real, and

eigenvectors are orthogonal

INF 5300 30




Interpretation of eigenvectors and eigenvalues

@ The eigenvectors of the covariance matrix X correspond to
the principal axes of equiprobability ellipses!

@ The linear transformation defined by the eigenvectors of X
leads to vectors that are uncorrelated regardless of the form of
the distribution

o If the distribution happens to be Gaussian, then the
transformed vectors will be statistically independent

r+ 1 A
IM = MA with M=|w, v, vy and A=|

. 1 1 ; 1 ne v~y |
feli)= —————exp| —= (X —p)' =X - \ Foly) = [ [—m—tpt =
2 p[ Al Wi \ y I‘I "
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Linear feature transforms

@ Feature extraction can be stated as
e Given a feature space x; € R, find an optimal mapping
y =f(x): R, = R, with m < n.
e An optimal mapping in classification :the transformed feature
vector y vyield the same classification rate as x.

@ T[he optimal mapping may be a non-linear function
e Difficult to generate/optimize non-linear transforms
e Feature extraction is therefore usually limited to linear
transforms y = AT x

_ - _ [ ox ]
Y1 d11 411 --- @din Xo
Y2 a1 a2 ... ap

| Ym | dm1 9mi .-+ dmn | '
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Signal representation vs classification

The search for the feature extraction mapping
y = f(x) is guided by an objective function we want to
maximize.

In general we have two categories of objectives in feature
extraction:

— Signal representation: Accurately approximate the samples in a
lower-dimensional space by minimizing the mean square error
between the original feature vector and the low-dimensional
projection.

— Classification: Keep (or enhance) class-discriminatory information in
a lower-dimensional space.

INF 5300 33

Signal representation vs classification

Principal components analysis (PCA)
— - signal representation, unsupervised
— Minimize the mean square representation
error
Linear discriminant analysis (LDA)
— -classification, supervised
— Maximize the distance between 4
the classes

Feature 2

Y

Feature 1
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Correlation matrix vs.
covariance matrix

e X is the covariance matrix of x
5 = El(x-)x—u) |

* R, is the correlation matrix of x
Ry = E[x)0" |

* R=%, if n,=0.
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Principal component or
Karhunen-Loeve transform

Let x be a feature vector.

Features are often correlated, which might lead to
redundancies.

We now derive a transform which yields uncorrelated
features.

We seek a linear transform y=ATx, and the y;s should be
uncorrelated.

The y;s are uncorrelated if E[y(i))y(j)]=0, i=j.

If we can express the information in x using uncorrelated
features, we might need fewer coefficients.
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Principal component transform

e The correlation of Y is described by the correlation matrix
Ry=E[yyT]=E[A™XXTA]=ATR,A R, is the correlation matrix of X
R, is symmetric, thus all eigenvectors are orthogonal.

= We seek uncorrelated components of Y, thus R, should be
diagonal.

From linear algebra:

» R, will be diagonal if A is formed by the orthogonal
elgenvectors a;, i=0,...,N-1 of R,: R=ATR,A=A, where A
Is diagonal with the elgenvalues of R,, A;, on the diagonal.

« We find A by solving the equation AT/R, A=A (using
Singular Value Decomposition (SVD)).

» Ais formed by computing the eigenvectors of R, Each
eigenvector will be a column of A.
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Mean square error approximation

e X can be expressed as a combination of all N basis vectors:
N-1
x=Y_y(i)a;, where y(i) = aj X
i=0
e An approximation to x is found by using only m of the basis vectors:

m-1
X= Z:y(l)aI a projection into the m-dimensional
i=0 subspace spanned by m eigenvectors

e The PC-transform is based on minimizing the mean square error
associted with this approximation.

e The mean square error associated with this approximation is

]‘E{ZZ( el fy(ia, )}
i:ZmE[y (i)]:izzmai o b
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y(i)a;

e-52]- E{




Furthermore, we can find that

5 N-1 T N-1
elx-s7)- Yol 2= 3.4
i=m i=m

The mean square error is thus

e[x-52)- za za za

i=
The error is minimized |f we select the eigenvectors
corresponding to the /m largest eigenvales of the correlation
matrix R,.

The transformed vector y is called the principal components of
X. The transform is called the principal component transform or
Karhunen-Loeve-transform.
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Principal component of the
covariance matrix

Alternatively, we can find the principal components of
the covariance matrix Z,.

If we have software for computing principal
components of R,, we can compute principal
components from X, by first setting z=x- p, and
compute PC(2).

The principal component transform is not scale
invariant, because the eigenvectors are not invariant.
Often, normalization to data with zero mean and unit
variance is done prior to applying the PC-transform.
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Principal components
and total variance

Assume that E[x]=0.

Let y=PC(x).

From R, we know that the variance of component y,
IS A

The eigenvalues A; of the correlation matrix R, is thus
equal to the variance of the transformed features.

By selecting the /m eigenvectors with the largest
eigenvalues, we select the m dimensions with the
largest variance.

The first principal component will be along the
direction of the input space which has largest
variance.
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Geometrical interpretation of
principal components

The eigenvector
corresponding to the
largest eigenvalue is the
direction in n-dimensional
space with highest
variance.

The next principal
component is orthogonal
to the first, and along the
direction with the second
largest variance.

E
(%3
=
R
=+
b=l
[
L)
o

33 BR i
Band Sdm.raw

Note that the direction with the highest variance is
NOT related to separability between classes.
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PCA example

3d Gaussian with parameters

124
104

(@RNIN

1

[25 —1 7}(@
p=[0521, ¥=| -1 4 -—
| 7 —4 10 |
L d

o » N o N @
T R R I S N
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Principal component images

e For an image with n bands, we can compute the
principal component transform of the entire image X.

e Y=PC(X) will then be a new image with n bands, but
most of the variance is in the bands with the lowest
index (corresponding to the largest eigenvalues).
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PC and compression

PC-transform is optimal transform with respect to preserving the
energy in the original image.

For compression purposes, PC-transform is theoretically optimal
with respect to maximizing the entropy (from information
theory). Entropy is related to randomness and thus to variance.

The basis vectors are the eigenvectors and vary from image to
image. For transmission, both the transform coefficients and the
eigenvectors must be transmitted.

PC-transform can be reasonably well approximated by the
Cosinus-transform or Sinus-transform. These use constant basis
vectors and are better suited for transmission, since only the
coefficients must be transmitted (or stored).
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