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Today:Today: 

• Feature normalization

• Feature selection• Feature selection

• Feature transformation through principal 
component analysiscomponent analysis 

Next lecture: 

• Fisher’s linear discriminant function
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• Fisher s linear discriminant function

CurriculumCurriculum

The lecture is based on the following sections from• The lecture is based on the following sections from 
”Pattern Recognition” by S. Theodoridis and K. 
Koutroumbas:Koutroumbas:

• 5.1 
• 5 2 2 Feature normalization• 5.2.2 Feature normalization
• 5.5.3 Scatter matrices
• 5 6 Feature subset selection• 5.6 Feature subset selection
• 5.7 Fisher’s linear discriminant function (next lecture)
• 6 1-6 3 Principal component analysis• 6.1-6.3 Principal component analysis
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Reminder Basic classification principlesReminder - Basic classification principles

Classification task:Classification task:
• Classify object                     to one of the R classes
• Decision rule d(x)=r divides the feature space into R 

 nxxx ,...,1
R ,...1

disjoint subsets Kr, r=1,...R.
• The borders between subsets Kr, r=1,...R are defined by R 

scalar discrimination functions g1(x),....gR(x)scalar discrimination functions g1(x),....gR(x)
• The discrimination functions must satisfy:

gr(x)gs(x), sr, for all xKr

Di i i ti h f th d fi d b• Discrimination hypersurfaces are thus defined by
gr(x)-gs(x)=0

• The pattern x will be classified to the class whose p
discrimination function gives a maximum:
d(x)=r  gr(x) = max gs(x)

s=1,...R
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Reminder Bayesian classificationReminder - Bayesian classification

Prior probabilities P( ) for each class• Prior probabilities P(r) for each class
• Bayes classification rule: classify a pattern x to the 

class with the highest posterior probability P( |x)class with the highest posterior probability P(r|x) 
P(r|x) = max P(s|x)

s=1,...R

• P(s|x) is computed using Bayes formula
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Reminder - Classification with Gaussian 
distributions

• Probability distribution for n dimensional Gaussian vector:• Probability distribution for n-dimensional Gaussian vector: 
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• s and s are not known, but they are estimated from M training 
samples as the Maximum Likelihood estimates

s class tobelongingsamples  trainingallover is sum thewhere
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The curse of dimensionalityThe curse of dimensionality
• Assume we have S classes and a n-dimensional feature vector.
• With a fully multivariate Gaussian model, we must estimate S 

different mean vectors  and S different covariance matrices 
from training samplesfrom training samples.

s̂ has n elements

s̂ has n(n-1)/2 elements

• Assume that we have Ms training samples from each class
h f h h d l f

s has n(n 1)/2 elements

• Given Ms, there is a maximum of the achieved classification 
performance for a certain value of n (increasing n beyond this 
limit will lead to worse performance after a certain).

• Adding more features is not always a good idea!
• If we have limited training data, we can use diagonal covariance 

matrices or regularization
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matrices or regularization.



How do we beat the ”curse of dimensionality”?How do we beat the curse of dimensionality ?

Use regularized estimates for the Gaussian case• Use regularized estimates for the Gaussian case
– Use diagonal covariance matrices
– Apply regularized covariance estimationApply regularized covariance estimation

• Generate few, but informative features,
– Careful feature design given the application

• Reducing the dimensionality
– Feature selection
– Feature transforms
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Regularized covariance matrix estimationRegularized covariance matrix estimation

• Let the covariance matrix be a weighted combination of a class• Let the covariance matrix be a weighted combination of a class-
specific covariance matrix k and a common covariance matrix  
:

  nn  1   
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der 01 must be determined, and nk and n is the number of 
training samples for class k and overall. 

• Alternatively: 

    Ikk   1

where the parameter 01 must be determined. 
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Feature selectionFeature selection

Given a large set of N features how do we select the• Given a large set of N features, how do we select the 
best subset of m features?
– How do we select m?How do we select m?
– Finding the best combination of m features out a N possible 

is a large optimization problem.
– Full search is normally not possible.
– Suboptimal approaches are often used.

How many features are needed?– How many features are needed?

• Alternative: compute lower-dimensional projections 
of the N-dimensional spaceof the N dimensional space
– PCA
– Fisher’s linear discriminant
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– Projection pursuit and other non-linear approaches

Preprocessing data normalizationPreprocessing - data normalization

Features may have different ranges• Features may have different ranges
– Feature 1 has range f1min-f1max

– Feature n has range fn i -fnFeature n has range fnmin fnmax

– This does not reflect their significance in classification 
performance!

– Example: minimum distance classifier uses Euclidean 
distance

• Features with large absolute values will dominate the classifierFeatures with large absolute values will dominate the classifier
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Feature normalizationFeature normalization
• Normalize all features to have the same mean and variance• Normalize all features to have the same mean and variance.
• Data set with N objects and K features
• Features xik, i=1...N, k=1,...K
Zero mean unit variance: Softmax (non linear)Zero mean, unit variance: Softmax (non-linear)
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Remark: normalization may destroy important discrimination 
information

k
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Feature selectionFeature selection
• How do we find the best subset of m out• How do we find the best subset of m out 

of n features. 
• Search strategy

– Exhaustive search implies      if we fix m
and 2n if we need to search all possible m
as well.

– Choosing 10 out of 100 will result in 1013

queries to J
– Obviously we need to guide the search!y g

• Objective function (J)
– ”Predict” classifier performance

D id h d b t if– Decides how good a subset if
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Distance measures (to specify J)Distance measures (to specify J)

Between two classes:• Between two classes:
– Distance between the closest two points?
– Maximum distance between two points?Maximum distance between two points?
– Distance between the class means?
– Average distance between points in the two classes?
– Which distance measure?

• Between K classes:
– How do we generalize to more than two classes?
– Average distance between the classes?

Smallest distance between a pair of classes?– Smallest distance between a pair of classes?

Note: Often performance should be evalued in terms of 
classification error rate (e.g. on the training set or on
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classification error rate (e.g. on the training set or on 
a validation set)

Class separability measuresClass separability measures

How do we get an indication of the separability• How do we get an indication of the separability 
between two classes?
– Euclidean distance | -  |Euclidean distance |r s|
– Bhattacharyya distance

• Can be defined for different distributions
• For Gaussian data, it is
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DivergenceDivergence 

Divergence (see 5 5 in Theodoridis and• Divergence (see 5.5 in Theodoridis and 
Koutroumbas) is a measure of distance between 
probability density functions.probability density functions.

• Mahalanobis distance is a form of divergence 
measure. 

• The Bhattacharrya distance is related to the Chernoff 
bound for the lowest classification error.

• If two classes have equal variance 1=2, then the 
Bhattacharrya distance is proportional to the 
Mahalanobis distance. 
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Selecting individual featuresSelecting individual features
• Each feature is treated individually (no correlation between• Each feature is treated individually (no correlation between 

features)
• Select a criteria, e.g. a distance measure
• Rank the feature according to the value of the criteria C(k)
• Select the set of features with the best individual criteria value

M lti l it ti• Multiclass situations:
– Average class separability or
– C(k) = min distance(i j) - worst case Often usedC(k)  min distance(i,j) worst case 

• Advantage with individual selection: computation time
• Disadvantage: no correlation is utilized.
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Individual feature selection contIndividual feature selection cont.
• We can also include a simple measure of feature correlation.
• Cross-Correlation between feature i and j: (|ij|1)
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– Select C(k) and compute for all xk, k=1,...m. Rank in 
descending order and select the one with best value. Call 
this xi1.

– Compute the cross-correlation between xi1 and all other 
features. Choose the feature xi2 for which 
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Sequential backward selectionSequential backward selection

Example: 4 features x x x x• Example: 4 features x1,x2,x3,x4

• Choose a criterion C and compute it for the vector 
[x x x x ]T[x1,x2,x3,x4]T

• Eliminate one feature at a time by computing 
[x1 x2 x3]T [x1 x2 x4]T [x1 x3 x4]T and [x2 x3 x4]T[x1,x2,x3] , [x1,x2,x4]T, [x1,x3,x4] and [x2,x3,x4]

• Select the best combination, say [x1,x2,x3]T.
• From the selected 3-dimensional feature vector• From the selected 3 dimensional feature vector 

eliminate one more feature, and evaluate the 
criterion for [x1,x2]T, [x1,x3]T, [x2,x3]T and select the [ 1, 2] , [ 1, 3]T, [ 2, 3]
one with the best value.

• Number of combinations searched: 
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1+1/2((m+1)m-l(l+1))



Sequential forward selectionSequential forward selection
• Compute the criterion value for each feature Select the• Compute the criterion value for each feature. Select the 

feature with the best value, say x1.
• Form all possible combinations of features x1 (the winner atForm all possible combinations of features x1 (the winner at 

the previous step) and a new feature, e.g. [x1,x2]T, [x1,x3]T, 
[x1,x4]T, etc. Compute the criterion and select the best one, 
say [x x ]Tsay [x1,x3]T.

• Continue with adding a new feature.
• Number of combinations searched: lm-l(l-1)/2.Number of combinations searched: lm l(l 1)/2.

– Backwards selection is faster if l is closer to m than to 1. 
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Plus L Minus R Selection (LRS)Plus-L Minus-R Selection (LRS)
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Bidirectional Search (BDS)Bidirectional Search (BDS)
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Floating search methodsFloating search methods
• Problem with backward selection: if one feature is excluded, it ,

cannot be considered again. 
• Floating methods can reconsider features previously discarded.

Floating search can be defined both for forward and backward• Floating search can be defined both for forward and backward 
selection, here we study forward selection. 

• Let Xk={x1,x2,...,xk} be the best combination of the k features k 1 2 k
and Ym-k the remaining m-k features. 

• At the next step the k+1 best subset Xk+1is formed by 
’borrowing’ an element from Yborrowing  an element from Ym-k.

• Then, return to previously selected lower dimension subset to 
check whether the inclusion of this new element improves the 

i icriterion. 
• If so, let the new element replace one of the previously selected 

features.
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Algorithm for floating searchAlgorithm for floating search

Step I: Inclusion• Step I: Inclusion
xk+1=argmaxyYm-kC({Xk,y}) (choose the element from Ym-k 
that has best effect of C when combined with Xk).t at as best e ect o C e co b ed t k)
Set Xk+1= {Xk, xk+1}. 

• Step II: Testp
1. xr= argmaxyXk+1

C({Xk+1-y}) (Find the feature with the 
least effect on C when removed from Xk+1)

2 If k+1 h k k+1 d t t I2. If r=k+1, change k=k+1 and go to step I.
3. If rk+1 AND C({Xk+1-xr})<C(Xk), goto step I. (If removing 

xk did not improve the cost, no further backwards k p ,
selection)

4. If k=2 put Xk= Xk+1- xr and C(Xk)=C(Xk+1- xr). Goto step I.
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Algorithm contAlgorithm cont.

Step III: Exclusion• Step III: Exclusion
1.Xk’=Xk+1-xr (remove xr)
2 x = argmax X ’C({Xk’-y}) (find the least significant feature2.xs= argmaxyXk’C({Xk y}) (find the least significant feature 
in the new set.)
3.If C(Xk’- xs)<C(Xk-1) then Xk= Xk’ and goto step I. 
4.Put Xk-1’=Xk’-xs and k=k-1. 
5.If k=2, put Xk=Xk’ and C(Xk)=C(Xk’) and goto step I.
6 Goto step III6.Goto step III.

Floating search often yields better performance thanFloating search often yields better performance than 
sequential search, but at the cost of increased 
computational time. 
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Optimal searches and randomized methodsOptimal searches and randomized methods
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Sequential Floating Search (SFFS and SFBS)Sequential Floating Search (SFFS and SFBS)
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Feature transformsFeature transforms

We now consider computing new features as linear• We now consider computing new features as linear 
combinations of the existing features.

• From the original feature vector x we compute a• From the original feature vector x, we compute a 
new vector y of transformed features
y=ATxy
y is l-dimensional, x is m-dimensional, A is a lm matrix.

• y is normally defined in such a way that it has lower 
dimension than x.
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Vector spacesVector spaces
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Linear transformationLinear transformation
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Eigenvalues and eigenvectorsEigenvalues and eigenvectors
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Interpretation of eigenvectors and eigenvaluesInterpretation of eigenvectors and eigenvalues
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Linear feature transformsLinear feature transforms
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Signal representation vs classificationSignal representation vs classification

• The search for the feature extraction mapping• The search for the feature extraction mapping 
y = f(x) is guided by an objective function we want to 
maximize.

• In general we have two categories of objectives in feature• In general we have two categories of objectives in feature 
extraction:
– Signal representation: Accurately approximate the samples in a 

lower-dimensional space by minimizing the mean square errorlower-dimensional space by minimizing the mean square error 
between the original feature vector and the low-dimensional 
projection.

– Classification: Keep (or enhance) class-discriminatory information inClassification: Keep (or enhance) class discriminatory information in 
a lower-dimensional space.
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Signal representation vs classificationSignal representation vs classification

• Principal components analysis (PCA)• Principal components analysis (PCA)
– - signal representation, unsupervised
– Minimize the mean square representation 

error
Linear discriminant analysis (LDA)• Linear discriminant analysis (LDA)

– -classification, supervised
– Maximize the distance between

the classes
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Correlation matrix vs. 
covariance matrixcovariance matrix

 is the covariance matrix of x• x is the covariance matrix of x

   T
x xxE  

• Rx is the correlation matrix of x

 
R if 0

   T
x xxER 

• Rx=x if x=0. 
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Principal component or
K h L t fKarhunen-Loeve transform

• Let x be a feature vector• Let x be a feature vector.
• Features are often correlated, which might lead to 

redundancies.redundancies.
• We now derive a transform which yields uncorrelated 

features.
• We seek a linear transform y=ATx, and the yis should be 

uncorrelated. 
Th l t d if E[ (i) (j)] 0 i j• The yis are uncorrelated if E[y(i)y(j)]=0, ij.

• If we can express the information in x using uncorrelated 
features we might need fewer coefficientsfeatures, we might need fewer coefficients.
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Principal component transformPrincipal component transform
• The correlation of Y is described by the correlation matrix• The correlation of Y is described by the correlation matrix

RY=E[yyT]=E[ATxxTA]=ATRxA            Rx is the correlation matrix of X
Rx is symmetric, thus all eigenvectors are orthogonal.

• We seek uncorrelated components of Y, thus Ry should be 
diagonal.diagonal. 

From linear algebra:
• Ry will be diagonal if A is formed by the orthogonal 

f T h
y

eigenvectors ai, i=0,...,N-1 of Rx:    Ry=ATRxA=, where 
is diagonal with the eigenvalues of Rx, i, on the diagonal.

• We find A by solving the equation ATRxA= (usingWe find A by solving the equation A RxA  (using 
Singular Value Decomposition (SVD)).

• A is formed by computing the eigenvectors of Rx. Each 
i t ill b l f A
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eigenvector will be a column of A.

Mean square error approximationMean square error approximation

• x can be expressed as a combination of all N basis vectors:• x can be expressed as a combination of all N basis vectors: 
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• Furthermore, we can find that
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corresponding to the m largest eigenvales of the correlation 
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p g g g
matrix Rx.

• The transformed vector y is called the principal components of 
x. The transform is called the principal component transform orx. The transform is called the principal component transform or 
Karhunen-Loeve-transform.
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Principal component of the 
i t icovariance matrix

Alternatively we can find the principal components of• Alternatively, we can find the principal components of 
the covariance matrix x.

• If we have software for computing principal• If we have software for computing principal 
components  of Rx, we can compute principal 
components from x by first setting z=x- x and p x y g x
compute PC(z). 

• The principal component transform is not scale 
invariant, because the eigenvectors are not invariant. 
Often, normalization to data with zero mean and unit 
variance is done prior to applying the PC-transform.
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Principal components 
d l iand total variance

Assume that E[x] 0• Assume that E[x]=0. 
• Let y=PC(x).

F R k th t th i f t• From Ry we know that the variance of component yj
is j.

• The eigenvalues  of the correlation matrix R is thus• The eigenvalues j of the correlation matrix Rx is thus 
equal to the variance of the transformed features. 

• By selecting the m eigenvectors with the largest• By selecting the m eigenvectors with the largest 
eigenvalues, we select the m dimensions with the 
largest variance.g

• The first principal component will be along the 
direction of the input space which has largest 

INF 5300 41

variance.

Geometrical interpretation of 
i i l tprincipal components

• The eigenvector• The eigenvector 
corresponding to the 
largest eigenvalue is the 
di ti i di i ldirection in n-dimensional 
space with highest 
variance.

• The next principal 
component is orthogonal 
to the first and along theto the first, and along the 
direction with the second 
largest variance.

Note that the direction with the highest variance is 
NOT related to separability between classes
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NOT related to separability between classes. 



PCA examplePCA example

3d Gaussian with parameters3d Gaussian with parameters 

INF 5300 43

Principal component imagesPrincipal component images

For an image with n bands we can compute the• For an image with n bands, we can compute the 
principal component transform of the entire image X.

• Y=PC(X) will then be a new image with n bands but• Y=PC(X) will then be a new image with n bands, but 
most of the variance is in the bands with the lowest 
index (corresponding to the largest eigenvalues).( p g g g )
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PC and compressionPC and compression
• PC transform is optimal transform with respect to preserving the• PC-transform is optimal transform with respect to preserving the 

energy in the original image.
• For compression purposes, PC-transform is theoretically optimal 

with respect to maximizing the entropy (from information 
theory). Entropy is related to randomness and thus to variance.

• The basis vectors are the eigenvectors and vary from image to• The basis vectors are the eigenvectors and vary from image to 
image. For transmission, both the transform coefficients and the 
eigenvectors must be transmitted.
PC t f b bl ll i t d b th• PC-transform can be reasonably well approximated by the 
Cosinus-transform or Sinus-transform. These use constant basis 
vectors and are better suited for transmission, since only the 
coefficients must be transmitted (or stored).
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