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CHAPTER 5

FEATURE SELECTION

5.1 INTRODUCTION

In all previous chapters, we considered the features to be available prior to the
design of the classifier. The goal of this chapter is to study methodologies related
to the selection of these variables. As we pointed out very early in the book, a
major problem associated with pattern recognition is the so-called curse of dimen-
sionality (Section 2.5.6). The number of features at the disposal of the designer
of a classification system is usually very large. As we will see in Chapter 7,
this number can easily become of the order of a few dozens or even hundreds.
There is more than one reason for the necessity to reduce the number of fea-
tures to a sufficient minimum. Computational complexity is the obvious one. A
related reason is that although two features may carry good classification infor-
mation when treated separately, there is little gain if they are combined together
in a feature vector, because of a high mutual correlation. Thus, complexity in-
creases without much gain. Another major reason is that imposed by the required
generalization properties of the classifier, as discussed in Section 4.9 of the pre-
vious chapter. According to the discussion there and as we will state more for-
mally at the end of this chapter, the higher the ratio of the number of training
patterns N to the number of free classifier parameters, the better the generaliza-
tion properties of the resulting classifier. A large number of features is directly
translated into a large number of classifier parameters (e.g., synaptic weights in
a neural network, weights in a linear classifier). Thus, for a finite and usually
limited number N of training patterns, keeping the number of features as small
as possible is in line with our desire to design classifiers with good generaliza-
tion capabilities. Furthermore, the ratio N /| enters the scene from another nearby
corner. One important step in the design of a classification system is the per-
formance evaluation stage, in which the classification error probability of the
designed classifier is estimated. We not only need to design a classification sys-
tem, we must also assess its performance. As is pointed out in Chapter 10, the
classification error estimate improves as this ratio becomes higher. In [Fine 83]
it is pointed out that in some cases ratios as high as 10 to 20 were considered

necessary.
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The major task of this chapter can now be summarized as follows. Given a num-
ber of features, how can one select the most important of them so as to reduce theiy
number and at the same time retain as much as possible of their class discriminatory
information? The procedure is known as feature selection or reduction. It must be
emphasized that this step is very crucial. If we selected features with little discrimi-
nation power, the subsequent design of a classifier would lead to poor performance.
On the other hand, if information-rich features are selected, the design of the clas-
sifier can be greatly simplified. In a more quantitative description, we should aim
to select features leading to large between-class distance and small within-class
variance in the feature vector space. This means that features should take distant
values in the different classes and closely located values in the same class. To this
end, different scenarios will be adopted. One is to examine the features individu-
ally and discard those with little discriminatory capability. A better alternative is to
examine them in combinations. Sometimes the application of a linear or nonlinear
transformation to a feature vector may lead to a new one with better discriminatory
properties. All these paths will be our touring directions in this chapter.

Finally, it must be pointed out that there is some confusion in the literature
concerning the terminology of this stage. In some texts the term feature extraction
is used, but we feel that this may be confused with the feature generation stage
treated in Chapter 7. Others prefer to call it a preprocessing stage. We have kept
the latter term to describe the processing performed on the features prior to their
utilization. Such processing involves outlier removal, scaling of the features to
safeguard comparable dynamic range of their respective values, treating missing
data, and so forth.

5.2 PREPROCESSING
5.2.1 Outlier Removal

An outlier is defined as a point that lies very far from the mean of the corresponding
random variable., This distance is measured with respect to a given threshold,
usually a number of times the standard deviation. For anormally distributed random
variable a distance of two times the standard deviation covers 95% of the points,
and a distance of three times the standard deviation covers 99% of the points.
Points with values very different from the mean value produce large errors during
training and may have disastrous effects. These effects are even worse when the
outliers are the result of noisy measurements. If the number of outliers is very
small, they are usually discarded. However, if this is not the case and they are the
result of a distribution with long tails, then the designer may have to adopt cost
functions that are not very sensitive in the presence of outliers. For example, the
least squares criterion is very sensitive to outliers, because large errors dominate
the cost function due to the squaring of the terms. A review of related techniques
that attempt to address such problems is given in [Hube 81].
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52.2 Data Normalization

In many practical situations a designer is confronted with features whose values lie
within different dynamic ranges. Thus, features with large values may have alarger
influence in the cost function than features with small values, although this does not
necessarily reflect their respective significance in the design of the classifier. The
problem is overcome by normalizing the features so that their values lie within
similar ranges. A straightforward technique is normalization via the respective
estimates of the mean and variance. For N available data of the kth feature we have
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In words, all the resulting normalized features will now have zero mean and unit
variance. This is obviously a linear method. Other linear techniques limit the fea-
ture values in the range of [0, 1] or [—1, 1] by proper scaling. Besides the linear
methods, nonlinear methods can also be employed in cases in which the data are
not evenly distributed around the mean. In such cases transformations based on
nonlinear (i.e., logarithmic or sigmoid) functions can be used to map data within
specified intervals. The so-called softmax scaling is a popular canditate. It consists

of two steps

[T oL S TN el 5.1)

r oy 1 + exp(—y)
This is basically a squashing function limiting data in the range of [0, 1]. Using a se-
ries expansion approximation, itis not difficult to see that for small values of y this is
an approximately linear function with respect to x;. The range of values of x;; that
correspond to the linear section depends on the standard deviation and the factor
r, which is user defined. Values away from the mean are squashed exponentially.

5.2.3 Missing Data

In practice, it may happen that the number of available data is not the same for all
features. If the number of training data is high enough, we can afford to discard
some of them and keep a smaller number, the same for all features, in order to form
the feature vectors. However, in many cases it is a luxury to drop available data.
In these cases missing data have to be predicted heuristically. An obvious thought
is to replace missing values with the corresponding mean, computed from the
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available values of the respective features. More elaborate techniques, exploiting
the statistical information about the underlying distribution, have also been pro-

posed and used [Ghah 94, Lowe 90], We will return to the missing data problem
in Chapter 11.

5.3 FEATURE SELECTION BASED ON STATISTICAL
HYPOTHESIS TESTING

A first step in feature selection is to look at each of the generated features indepen-
dently and test their discriminatory capability for the problem at hand. Although
looking at the features independently is far from optimal, this procedure helps us to
discard easily recognizable “bad"” choices and keeps the more elaborate techniques,
which we will consider next, from unnecessary computational burden.

Let x be the random variable representing a specific feature. We will try to
mvestigate whether the values it takes for the different classes, say wy, wy, differ
significantly. To give an answer to this question we will formulate the problem in
the context of statistical hypothesis testing. That is, we will try to answer which
of the following hypotheses is correct:

Hy: The values of the feature do not differ significantly
Hy: The values of the feature differ significantly

Hy is known as the null hypothesis and H, as the alternative hypothesis. The
decision is reached on the basis of experimental evidence supporting the rejection or
not of Hy. This is accomplished by exploiting statistical information, and obviously
any decision will be taken subject to an error probability. We will approach the
problem by considering the differences of the mean values corresponding to a
specific feature in the various classes, and we will test whether these differences
are significantly different from zero. Let us first, however, refresh our memory
with some basics from the statistics related to hypothesis testing.

5.3.1 Hypothesis Testing Basics

Let x be arandom variable with a probability density function, which is assumed to
be known within an unknown parameter 6. As we have already seen in Chapter 2,
in the case of a Gaussian this parameter may be the mean value or its variance.
Our interest here lies in the following hypothesis test:

H]: 24 % 9@

Hy: 8 =6,
The decision on this test is reached in the following context. Letx;, i =1,2,..., N,
be the experimental samples of the random variable x. A function fC,...,)is

selected, depending on the specific problem, and let q=fxi,x2,...,xy). The
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® ®

FIGURE 5.2: Example of (a) overlapping pdf’s of the same feature in two
classes and (b) the resulting ROC curve.

two completely separated class distributions, moving the threshold to sweep the
whole range of values for @ in [0, 1], 1 — B remains equal to unity. Thus, the afore-
mentioned area varies between zero, for complete overlap, and 1/2 (the area of the
upper triangle), for complete separation, and it is @ measure of the class discrim-
ination capability of the specific Jeature. In practice, the ROC curve can easily be
constructed by sweeping the threshold and computing percentages of wrong and
correct classifications over the available training feature vectors. Other related cri-
teria that test the overlap of the classes have also been suggested (see Problem 5.5).

5.5 CLASS SEPARABILITY MEASURES

The emphasis in the previous section was on techniques referring to the discrim-
ination properties of individual features. However, such methods neglect to take
into account the correlation that unavoidably exists among the various features
and influences the classification capabilities of the feature vectors that are formed.
Measuring the discrimination effectiveness of feature vectors will now become
our major concern. This information will then be used in two ways. The first is
to allow us to combine features appropriately and end up with the “best” feature
vector for a given dimension /. The second is to transform the original data on the
basis of an optimality criterion in order to come up with features offering high

classification power. In the sequel we will first state clgss separability measures,

which will be used subsequently in feature selection procedures.

5.5.1 Divergence

Let us recall our familiar Bayes rule. Given two classes wp and wy and a feature
vector x, we select w,; if

P(wi]x) > P(w,|x)
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As pointed out in Chapter 2, the classification error probability depends on the
difference between P(w;|x) and P(w;|x), e.g., equation (2.12). Hence, the ratio
%%":E% can convey useful information concerning the discriminatory capabilities
assoclated with an adopted feature vector x, with respect to the two classes @, ;.
Alternatively (for given values of P(w), P(w,)), the same information resides in
the ratio In % = Dj2(x) and this can be used as a measure of the underlying
discriminating information of class w; with respect to w,. Clearly, for completely
overlapped classes we get D12(x) = 0. Since x takes different values, it is natural

to consider the mean value over class wy, that is,

Diy =f" il EEEL (5.11)

plx|ws)

Similar arguments hold for class w, and we define

+00
D =f p(xlw)In p(( :w) dx (5.12)
-0 [}
The sum
di2 = Dya + D2

is known as the divergence and can be used as a separability measure for the classes
w1, ws, with respect to the adopted feature vector x. For a multiclass problem, the
divergence is computed for every class pair w;, w;

dij = Dij+ Dj;
+00
=f (p(xlwr) = p(x|w;))In p{( [‘“"id (5.13)
” w;

and the average class separability can be computed using the average divergence

M

M
d=Y > Pw)P(w)d;

=1 j=I

Divergence is basically a form of the Kulback-Liebler distance measure between
density functions [Kulb 51] (Appendix A). The divergence has the following easily
shown properties:
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It the components of the feature vector are

statistically independent, then it can be
shown (Problem 5.8) that

!
dij(x1, %2, ..., ) = Zd,-j(x,-}
r=|

Assuming now that the density functions are Gaussians N

respectively, the computation of the divergence is simpli
to show that

(HJ‘ Ea}and';\r(;u"f‘ zj)l
fied and it is not difficult

1 2 _ 1 _ _
d_-",' — EUQCC{EJ- }Ef + Z_,r ]z - 21} + E(Ju‘a . .ru'j)T(E." : = E; i)!:Ju'." - H_j)

(5.14)
For the one-dimensional case this becomes

2 2
1/07 g2 1 1 1
dy=cf L% o) 1o ,-2(_~+u—
i 2(634—6}2 )‘1'2(#. Ki) 7T

As already pointed out, a class separability measure cannot depend only on the
difference of the mean values; it must also be variance dependent. Indeed, diver-
gence does depend explicitly on both the differ
variances. Furthermore, d;; can be large even for equal mean values, provided the
variances differ significantly. Thus, class separation is still possible even if the
class means coincide. We will come to this later on.

Let us now investigate (5.14).
distributions are equal, ¥; = X

ence of the means and the respective

If the covariance matrices of the two Gaussian
j = L, then the divergence is further simplified to

dij = =) 2y — )

which is nothing other than the Mahalanobjs distance betwe

en the correspond-
ing mean vectors. This has

another interesting implication. Recalling Problem 2.9
of Chapter 2, it turns out that in this case we have a direct relation between the

divergence d;; and the Bayes error, that is, the minimum error we can achieve
by adopting the specific feature vector. Thi

$ is a most desirable property for any
class separability measure, U

nfortunately, such a direct relation of the divergence
with the Bayes error is not possible for more general distributions. Furthermore,
in [Swai 73, Rich 95] it is pointed out that the specific dependence of the diver-
gence on the difference of the mean vectors may lead to misleading results, in
the sense that small variations in the difference of the mean values can produce
large changes in the divergence, which, however, are not reflected in the classifica-
tion error. To overcome this, a variation of the divergence is suggested, called the

transform
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transformed divergence:
dij = 2(1 — exp(—d;;/8))

In the sequel, we will try to define class separability measures with a closer rela-
tionship to the Bayes error.

552 Chernoff Bound and Brattacharyya Distance

The minimum attainable classification error of the Bayes classifier for two classes
@), wy can be written as:

P, =j min[P{w;)p{xm;-), P{w_,-)p(x|wj)]dx (5.15)

o0

Analytic computation of this integral in the general case is not possible. However,
an upper bound can be derived. The derivation is based on the inequality

minfa, b] <a’b'™* for a,b>0, and 0<s<1 (5.16)

Combining (5.15) and (5.16), we get

oo

P, < P(w;) P(wp)'™ f plxlw) p(xlw)! *dx = ecs (5.17)

=00

ecp is known as the Chernoff bound. The minimum bound can be compﬁted by
minimizing €c 5 with respect to s. A special form of the bound results fors = 1/2:

Pe<ecp= \,fP(wJ)P(w;)f V p(xlw) p(x|w))dx (5.18)

For Gaussian distributions N (g;, ), N(uj. T,) and after a bit of algebra, we
obtain

écs = v/ P(w;)P(w;) exp(—B)

where
_ L s,
1 4 By 1. |55~
B=- L= T("—I“"‘-"{“) o= )T ‘-IDT,—Q—T 5.19)
8(; ) 5 (i — 1)) SRR (
and | - | denotes the determinant of the respective matrix. The term B is known

as the Brattacharyya distance and it is used as a class separability measure. Itcan
be shown (Problem 5.9) that it corresponds to the optimum Chernoff bound when
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¥; = X;. It is readily seen that in this case the Brattacharyya distance becomes
proportional to the Mahalanobis distance between the means.

A comparative study of various distance measures for feature selection in the
context of multispectral data classification in remote sensing can be found in
[Maus 90]. A more detailed treatment of the topic is given in [Fuku 90]

Example 5.4. Assume that P(w;) = P(w;) and that the corresponding distributions are
Gaussians A (u, crff) and N{p, 022[). The Brattacharyya distance becomes

olrell 2 I
1. (352) 1. fo2+02
B=c-h-2_L - _|p{1T% 5.20
2 n ;012102! 2 n( 20107 ) ¢ :
yeres

For the one-dimensional case | = 1 and for o1 = 100y, B = 0.8097 and

P. <0.2225
If(‘Ig = 10’00’2, B =1.9561 and

P. <0.0707

Thus, the greater the difference of the variances, the smaller the error bound. The
decrease is bigger for higher dimensions due to the dependence on /. Figure 5.3
shows the pdf’s for the same mean and o1 = 1, oo = 0.01. The figure is self-
explanatory as to how the Bayesian classifier discriminates between two classes of
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FIGURE 5.3: Gaussian pdf’s with the same mean and different variances.
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the same mean and significantly different variances. Furthermore, as o3 Jo —= 0,
the probability of error tends to zero (why?).

5.5.3 Scatter Matrices

A major disadvantage of the class separability criteria considered so far is that
they are not easily computed, unless the Gaussian assumption is employed. We
will now turn our attention on a set of simpler criteria, built upon information
related to the way feature vector samples are scattered in the /-dimensional space.
To this end, the following matrices are defined:

Within-class scatter matrix

where S; is the covariance matrix for class w;
Sf = E[{l’ . .ru'{)(x - ”’g}T}
and P; the a priori probability of class w;. That is, P; = n;/N, where n; is the

number of samples in class w;, out of a total of N samples. Obviously, trace{S,}
is a measure of the average, over all classes, variance of the features.

Berween-class scatter matrix

M
Sh="Y_ Pilps; — po)( — ko)

i=l

where 11, is the global mean vector

M
Ho = ZPHU'."

trace{S,} is a measure of the average (over all classes) distance of the mean of
each individual class from the respective global value.

Mixture scatter matrix
Sm = E[(x — po)(x = )" ]

That is, S,, is the covariance matrix of the feature vector with respect to the global
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mean. It is not difficult to show (Problem 5. 10) that

12 l -
Sm =Sy + 5y !
Its trace is the sum of variances of the features around their respective global mean, 8
From these definitions it is straightforward to see that the criterion |
trace{S, }
1 = ———
trace{S,,) 44
takes large values when samples in the /-dimensional space are well clustered
around their mean, within each class, and the clusters of the different classes are
well separated. Sometimes S, is used in place of S,,. An alternative criterion results FIGURE
if determinants are used in the place of traces, This is justified for scatter matrices class dist.
that are symmetric positive definite and thus their eigenvalues are positive (Ap- and (c¢) sr
pendix B). The trace is equal to the sum of the eigenvalues, while the determinant
is equal to their product. Hence, large values of J; also correspond to large values I
of the criterion
multiclas:
[ S| ;
Jy = —— = [§°'§,
ISl w Sml

A variant of J, commonly encountered in practice is

J3 = trace{S;'5,} where the
iz 4 feature ur
As we will see later on, criteria J, and /3 have the advantage of being invariant ' 3
i under linear transformations, and we will adopt them to derive features in an }i{‘%mf’ls‘
optimal way. In [Fuku 90] a number of different criteria are also defined by using zr:T (:jl:;d!
| various combinations of S, Sp, Sm in a “trace” or “determinant” formulation. bestis fé;f
However, whenever a determinant is used, one should be careful with S, since with large
|Ss| =0 for M <. This is because S, is the sum of M ! x I matrices, of rank one
each.
These criteria take a special form in the one-dimensional, two-class problem. 5.6 FEA
In this case, it is easy to see that for equiprobable classes |S,,| is proportional to Having dé
0‘|2 + 0'22 and |S,| proportional to (1) — wy)?. Combining S, and S, the so-called _ indivigual
1 Fisher's discriminant ratio results ' ,
{2 that is, to
G — (_!{-]2__, ME,)Z major dire
: gp Tey
| £ F DR is sometimes used to quantify the separability capabilities of individual fea- B0 &
P tures. F D R reminds us of the test statistic g appearing in the hypothesis statistical Features a
i tests dealt with before. However, here the use of FDR is suggested in a more can be ad¢
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FIGURE 5.4: Classes with (a) small within-class variance and small between-
class distances, (b) large within-class variance and small between-class distances
and (c) small within-class variance and large between-class distances.

“primitive” fashion, independent of the underlying statistical distributions. For the
multiclass case, averaging forms of F D R can be used. One possibility is

FDRI_LZ('U“

.EG+J

where the subscripts i, J refer to the mean and variance corresponding to the
feature under investigation for the classes w;, w;, respectively.

Example 5.5. Figure 3.4 shows three cases of classes at different locations and within-
class variances. The resulting values for the J3 criterion involving the S, and S,, matrices
are 164.7, 12.5, and 620.9 for the cases in Figures 5.4a, b, and c, respectively. That is, the
best is for distant well-clustered classes and the worst for the case of closely located classes
with large within-class variance.

5.6 FEATURE SUBSET SELECTION

Having defined a number of criteria, measuring the classification effectiveness of
individual features and/or feature vectors, we come to the heart of our problem,
that is, to select a subset of [ features out of m originally available. There are two
major directions to follow.

5.6.1 Scalar Feature Selection

Features are treated individually. Any of the class separability measuring criteria
can be adopted, for example, ROC, FDR, one-dimensional divergence, and so
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on. The value of the criterion C (k) is computed for each of the features, &k =
1,2, ..., m. Features are then ranked in order of descending values of C(k). The
[ features corresponding to the / best values of C (k) are then selected to form the
feature vector.

All the criteria we have dealt with in the previous sections measure the classifi-
cation capability with respect to a two-class problem. As we have already pointed
out in a couple of places, in a multiclass situation a form of average or “total”
value, over all classes, is used to compute C(k). However, this is not the only
possibility. In [Su 94] the one-dimensional divergence d;; was used and computed

for every pair of classes. Then, for each of the features, the corresponding C (k)
was set equal to

Clk) = min d;;
ij

that is, the minimum divergence value over all class pairs, instead of an average
value. Thus, selecting the features with the largest C(k) values is equivalent to
choosing features with the best “worst case” class separability capability, giving a
“maxmin” flavor to the feature selection task. Such an approach may lead to more
robust performance in certain cases.

The major advantage of dealing with features individually is computational
simplicity. However, such approaches do not take into account existing correlations
between features. Before we proceed to techniques dealing with vectors, we will
comment on some “ad hoc” techniques that incorporate correlation information
combined with criteria tailored for scalar features.

Let xpp,n = 1,2,...,Nand k = 1. 2,...,.m, be the kth feature of the nth
pattern. The cross-correlation coefficient between any two of them is given by

N
Zm—-] Xnj Xy
ISV 2 N 2
'\.-" an] .Xm- Zn:l xn;’

It can be shown that [0ij| < 1 (Problem 5.11). The selection procedure evolves
along the following steps:

® Select a class separability criterion C and compute its values for all the
available features x;, k = 1,2, ....m. Rank them in descending order and
choose the one with the best C value. Let us say that this is x;,.

® To select the second feature, compute the cross-correlation coefficient de-
fined in Eq. (5.21) between the chosen X;, and each of the remaining m — 1
features, that is, Oy J F 1.

® Choo
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e Choose the feature x;, for which

iy = arg max{a;C(j) — alpijl}, forall j #iy
i

where oy, @ are weighting factors that determine the relative importance
we give to the two terms. In words, for the selection of the next feature,
we take into account not only the class separability measure C but also the
correlation with the already chosen feature. This is then generalized for the

kth step
e Selectx;, k= 3,...,1,s0that
, ke
iy =arg max a;C(j) — k——“T [oi, i1 for j # i,
Fi = el

r=12...,k=1

That is, the average correlation with all previously selected features is taken

into account.

There are variations of this procedure. For example, in [Fine 83] more than one
criterion is adopted and averaged out. Hence, the best index is found by optimizing

k=1
; Lo
a1C1(J) + 2Ca(j) — Z—_-B-{ > 1piil

r=I

5.6.2 Feature Vector Selection

Treating features individually, that is, as scalars, has the advantage of computa-
tional simplicity but may not be effective for complex problems and for features
with high mutual correlation. We will now focus on techniques measuring classi-
fication capabilities of feature vectors. It does not require much thought to see that
computational burden is the major limiting factor of such an approach. Indeed, if
we want to act according to what “optimality” suggests, we should form all pos-
sible vector combinations of [ features out of the m originally available. For each
combination we should use one of the separability criteria introduced previously
(e.g., Brattacharrya distance, J>) and select the best feature vector combination.
Recalling our combinatorics basics, we obtain the total number of vectors as

my__m ,}
( ! ) T lm = D! (5.22)

This is a large number even for small values of I, m. Indeed, form = 20, I =5,
the number equals 15504. Furthermore, in many practical cases the number [ is
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not even known a priori. Thus, one has to try feature combinations for different
values of / and select the “best” value for it (beyond which no gain in performance
is obtained) and the corresponding “‘best” [-dimensional feature vector. As we
will see in Chapter 10, sometimes it is desirable to base our feature selection
decision not on the values of an adopted class separability criterion but on the
performance of the classifier itself. That is, for each feature vector combination
the classification error probability of the classifier has to be estimated and the
combination resulting in the minimum error probability selected. This approach
may increase the complexity requirements even more, depending, of course, on
the classifier type. In order to reduce complexity, a number of efficient searching

techniques have been suggested. Some of them are suboptimal and some optimal
(under certain assumptions or constraints).

Suboptimal Sea rching Techniques

Sequential Backward Selection,
ple. Let m = 4, and the originally a
select two of them. The selection p

We will demonstrate the method via an exam-

vailable features are Xy, X2, x3, x4. We wish to

rocedure consists of the following steps:

® Adopt aclass separability criterion, C, and
vector [xy, xa, x3, x4]7.

® Eliminate one feature and for each of the possible resulting combinations,
that is, [x;, x2, x317, [x;, xs, X", [x1, x3, 24]7, [xa, x3, x4)7, compute the
corresponding criterion value. Select the combination with the best value,
say [xy, x2, xa]7.

® From the selected three-dimensional feature vector eliminate one feature
and for each of the resulting combinations, [x), x,]7, [x;, x3]7, [x2, x3]7,
compute the criterion value and select the one

compute its value for the feature

with the best value.

Thus, starting from m, at each step we drop out one feature from the “best”
combination until we obtain a vector of / features. Obviously, this is a suboptimal
searching procedure, since nobody can guarantee that the optimal two-dimensional
vector has to originate from the optimal three-dimensional one. The number of
combinations searched via this method is 1+ 1/2((m + Dm — Il + 1)) (Problem
5.13), which is substantially less than that of the full search procedure.

Sequential Forward Selection. Here, the

reverse to the preceding procedure is
followed:

° Compute the criterion value for each
the best value, say xy.

® Form all possible two-dimensional vectors that ¢

of the features, Select the feature with

ontain the winner from the
T. Compute the criterion
one, say [x;, x3]7.
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value for each of them and select the best
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If = 3, then the procedure must continue. That is, we form all three-dimensional
vectors springing from the two-dimensional winner, that is, [xy, X3, x]7, x1, x3,
x4]7 , and select the best one. For the general [, m case, it is simple algebra to show
that the number of combinations searched with this procedure is Im — [({ = 1)/2.
Thus, from a computational point of view, the backward search technique is more
efficient than the forward one for [ closer to m than to L.

Floating Search Methods. The preceding two methods suffer from the so-called
nesting effect. That is, once a feature is discarded in the backward method, there is
no possibility for it to be reconsidered again. The opposite is true for the forward

feature is chosen, there is no way for it to be discarded later

procedure; once &
on. In [Pudi 94] a technique is suggested that offers the flexibility to reconsider

features previously discarded and vice versa, to discard features previously se-
lected. The technique is called the floating search method. There are two schemes
that implement this technique. One springs from the forward selection and the
other from the backward selection rationale. We will focus on the former. We
consider a set of m features, and the idea is to search for the best subset of
k of them for k = 1,2,..., | <m so that a cost criterion C is optimized. Let
Xy = {x1, %2, .5 x¢) be the set of the best combination of k of the features and
Y,.—i the set of the remaining m — k features. We also keep all the lower dimen-
sion best subsets X2, X3, .., Xi-1 of 2,3,..., k— 1 features, respectively. The
rationale at the heart of the method is summarized as follows: At the next step the

k + 1 best subset Xy is formed by “borrowing” an element from Yo LHED,
dimension subsets to check whether the

the criterion C. If it does, the new element
features. The steps of the algorithm, when

return to the previously selected lower
inclusion of this new element improves
replaces one of the previously selected
maximization of C is required are:

e Srep l: Inclusion
Xps) = arg MaXyey, C({Xx, y}); that is, choose that element from Y ¢

which, combined with X, results to the best value of C.

X1 = (X, Xenr}
o Stepll: Test

1. x, = argmaxilex, ., C(Xger — {&a)); that is, find the feature that has

the least effect on the cost when it # removed from X1

2. Ifr =k + 1,change k =k + 1 and go to step L.
Ifr # k+1AND C(Xy41 — [x.}) < C(Xy) go to step I; that is, if
removal of x, does not improve upon the cost of the previously selected
best group of &, no further backward search is performed.
4. Itk =2put Xx = Xit1 — {x,) and C(X) = C(Xk+1 — (x+}); go to
step L.

()
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e Step lll: Exclusion

1. X; = Xi41 — {x,}; that is, remove x, .

2. x; =argmaxyex; C(X; — {y}); thatis, find the least significant feature
in the new set,

3. ICX, —{x}) < C(Xy_;) then X = X, and go to step I; no further
backward search is performed.

4. PutX, , =X, —{x}andk =k — 1.

5. Ifk:Zputh:X;(andC(Xk)=C{X£_)andgotostep1.

6. Goto step Il

The algorithm is initialized by running the sequential forward algorithm to
form X,. The algorithm terminates when / features have been selected. Although
the algorithm does not guarantee finding all the best feature subsets, it results
in substantially improved performance compared with its sequential counterpart,
at the expense of increased complexity. The backward floating search scheme
operates In the reverse direction but with the same philosophy.

Optimal Searching Techniques

These techniques are applicable when the separability criterion is monotonic, that
is,

C(-Y]: Aize '3"[!') E C(x]‘ b rx!'r-x."-i-l)

This property allows identifying the optimal combination but at a considerably re-
duced computational cost with respect to (5.22). Algorithms based on the dynamic
programming concept (Chapter 8) offer one possibility to approaching the problem,
A computationally more efficient way is to formulate the problem as a combina-
torial optimization task and employ the so-called branch and bound methods to
obtain the optimal solution [Lawe 66, Yu 93]. These methods compute the optimal
value without involving exhaustive enumeration of all possible combinations. A
more detailed description of the branch and bound methods is given in Chapter 15
and can also be found in [Fuku 90]. However, the complexity of these techniques
is still higher than that of the previously mentioned suboptimal techniques.

A comparative study of various feature selection searching schemes can be
found in [Kitt 78, Devi 82, Pudi 94. Jain 97}

5.7 OPTIMAL FEATURE GENERATION

So far, the class separability measuring criteria have been used in a rather “passive”
way, that is, to measure the classification effectiveness of features generated in
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some way. In this section we will employ these measuring criteria in an “active”
way, that is, as an integral part of the feature generation process itself. From this
point of view, this section can be considered as a bridge between this chapter
and the following one. Our major task can be summarized as follows: If x is
an m-dimensional vector of measurement samples, transform it into another /-
dimensional vector y so that an adopted class separability criterion is optimized.
We will confine ourselves to linear transformations,

y:——ATx

where AT is an | x m matrix. Any of the criteria exposed so far can be used.
Obviously, the degree of complexity of the optimization procedure depends heavily
on the chosen criterion. We will demonstrate the method via the J3 scattering matrix
criterion, involving S, and Sj matrices. Its optimization is straightforward and at
the same time it has some interesting implications. Let Sy, Sxp be the within-
class and between-class scatter matrices of x. From the respective definitions, the
corresponding matrices of y become

Syw = A.F.S,w_.r‘i, Syp = ATSHA

Thus, the J5 criterion in the y subspace is given by

J3(A) = trace{(AT S, )7 (AT SxpA))

i tyFT

Our task is to compute the elements of A so that this is maximized. Then A must
necessarily satisfy

3J5(4) _
9A

0

It can be shown that (Problem 5.14)

0J3(A)

IA 28, AAT S A)~ (AT SepANAT S1wA) ! + 28 A(AT Srwd)™

=0
or
(SoLS.p)A = AT, Sy) (5.23)

An experienced eye will easily identify the affinity of this with an eigenvalue prob-
lern. Tt suffices to simplify its formulation slightly. Recall from Appendix B that the
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matrices S, Sy, can be diagonalized simultaneously by a linear transformation

B'S,,B=1I, BTS,B=D (5.24)
which are the within- and between-class scatter matrices of the transformed vector
J=BTy=BTAT,

Bisan! x [ matrix and D an/ x / diagonal matrix. Note that in going from y to
¥ there is no loss in the value of the cost J3. This is because J; is invariant under
linear transformations, within the [-dimensional subspace. Indeed,

]

3(9) = trace(S5,; Sy} = trace((B7S,, B)~'(BT S, B))

= trace(B~'S )5, B}
= trace(S; 1S, BB~} = Ji(y)

Combining (5.23) and (5.24), we finally obtain

($78:4)C =CD (5.25)
where C = AB isan m x | dimensional matrix. Equation (5.25) is a typical
eigenvalue-eigenvector problem, with the diagonal matrix D having the eigen-
values of 215, on its diagonal and C having the corresponding eigenvectors as
its columns, However, SraSepisanm x m matrix, and the question is which /
out of a total of m eigenvalues we must choose for the solution of (5.25). From
its definition, matrix S:p 1s of rank M — 1, where M is the number of classes
(Problem 5.15). Thus, S_;ul, Syb 18 also of rank M — ] and there are M — 1 nonzero
eigenvalues. Let us focus on the two possible alternatives separately,
® [ =M~ 1: We first form matrix C so that its columns are the unit norm

M — 1 eigenvectors of S7!S.,. Then we form the transformed vector

y =ty (5.26)
This guarantees the maximum J3 value. As a matter of fact, in reducing the
number of data from m to M — 1, there is no loss in class separability power,

as this is measured by J;. Indeed,

S0 = trace{Sy,Sep} = Ai + o £ Ay +0 (5.27)

and
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and
Jyg = trace{(C7 8, C) " (CT S0 (5.28)
Rearranging (5.25), we get
€T 8:4C =CT 8,:,CD (5.29)
Combining (5.28) and (5.29), we obtain
Jig=trace{D}) = k) + - -+ Ay = Ja, (5.30)

It is most interesting to view this from a slightly different perspective. Let us
recall the Bayesian classifier for an M class problem. Of the M conditional
class probabilities, P(w;[x), i =1,2,..., M, only M — 1 are independent,
since they all add up to one. In general, M — 1 is the minimum number of
discriminant functions needed for an M-class classification task (Problem
5.16). Hence, the linear operation C™ x, which computes the M — 1 compo-
nents of §, can be seen as the optimal linear classifier, where optimality is
with respect to J3. Therefore, this procedure can be viewed as a combination
of the feature selection and classifier design stages, provided the classifier
is a linear one. In Chapter 3 the optimal linear classifier was computed so as
to minimize the mean (least) squares error. In this section it was designed
to maximize J3. From this point of view, this section can also be seen as a
bridge with Chapter 3. This can be further strengthened by investigating the
specific form that this classifier takes for the two-class problem. In this case,
there is only one nonzero eigenvalue and it is not difficult to show (Problem
5.17) that

J=u —p) S lx

The resulting linear classifier is also known as Fisher’s linear discriminant.
For Gaussian random vectors, with equal covariance matrices in both classes,
this is nothing other than the optimal Bayesian classifier with the exception
of a threshold value (Problem 2.11). Recall from Problem 3.14 that this is
also directly related to the linear MSE classifier.

I<M~1: In this case C is formed from the eigenvectors correspond-
ing to the / largest eigenvalues of S;,!S.,. The fact that J; is given as
the sum of the corresponding eigenvalues guarantees its maximization. Of

course, in this case there is loss of the available information because now
Jrjlp < Jrg,‘_\-.
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Remarks ® Nc
op!

e If J;is used with another combination of matrices, such as Sy and S,,,, then, dif
in general, the rank of the corresponding matrix product involved in the trace the

1s m and there are m nonzero eigenvalues. In such cases the transformation dir
matrix C is formed so that its columns are the eigenvectors corresponding to err

the / largest eigenvalues. According to (5.30), this guarantees the maximum use
value of J3. ma

® A geometric interpretation of (5.26) reveals that § is the projection of the s Be

original vector x onto the subspace spanned by the eigenvectors v, of 508 opt
It must be pointed out that these are not mutually orthogonal. Indeed, al-

is
though matrices S,,, S, (S,,) are symmetric, products of the form 575 ve:
are not; thus, the eigenvectors are not mutually orthogonal (Problem 5.18). m-
Furthermore, as we saw during the proof, once we decide on which sub- trai
space to project (by selecting the appropriate combination of eigenvectors) imi
the value of I3 remains invariant under any linear transformation within
this subspace. That is, it is independent of the coordinate system and its
value depends only on the particular subspace. In general, projection of the
original feature vectors onto a lower dimensional subspace is associated
with some information loss. An extreme example is shown in Figure 5.5, wh
where the two classes coincide after projection on the v; axis. The choice X;
of the subspace corresponding to the optimal J3 value guarantees no loss of
information for / = M — | (as this is measured by the J3 criterion), Thus, _ .
| this is a good choice, provided that J3 is a good criterion for the problem 58 NE
f8 of interest. Of course, this is not always the case; it depends on the specific GE
g classification task. A more extensive treatment of the topic, also involving Recently,
| : other optimizing criteria, can be found in [Fuku 90]. and selec
AiE A networ
g | layer witl
the same
|
where the
18 a unique 1
; the input
shown tha
P eigenvect
l next chap
FIGURE 5.5: Geometry illustrating the loss of information associated with Such a n¢
A | BS projections in lower dimensional subspaces. drawback
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e No doubt, scattering matrix criteria are not the only ones to compute the

5.8

optimal transformation matrix. For example, [Wata 97] suggested using a
different transformation matrix for each class and optimizing with respect to
the classification error. This is within the spirit of the recent trend, to optimize
directly with respect to the quantity of interest, which is the classification
error probability. For the optimization, smooth versions of the error rate are
used to guarantee differentiability. Other ways to compute the transformation
matrix will be discussed in the next chapter.

Besides linear ones, nonlinear transformations can also be employed for
optimal feature selection. For example, in [Samm 69] a nonlinear technique
is proposed that attempts to preserve maximally all the distances between
vectors. Let x;, y;,i=1,2,..., N, be the feature vectors in the original
m-dimensional and the transformed /-dimensional space, respectively. The
transformation into the lower dimensional space is performed so as to max-
imize

1 = i (@G, j) —d, )*

— - = (5.31)
2..?:11 ?:;-;1 d*(t. ) =1 s5ie de(i, j)

J

where d®(i, j), d(i, j)are the (Euclidean) distances between vectors x;, and
x; in the original space and y;, y; in the transfromed space, respectively.

NEURAL NETWORKS AND FEATURE
GENERATION/SELECTION

Recently, efforts have been made to use neural networks for feature generation
and selection. A possible solution is via the so-called auto-associative nerworks.
A network is employed having m input and m output nodes and a single hidden
Jayer with [ nodes with linear activations. During training, the desired outputs are
the same as the inputs. That is,

£G) =) (Peli) = 1))

k=1

where the notation of the previous chapter has been adopted. Such a network has
a unique minimum and the outputs of the hidden layer constitute the projection of
the input m-dimensional space onto an /-dimensional subspace. In [Bour 88] it is
shown that this is basically a projection onto the subspace spanned by the/ principal
eigenvectors of the input correlation matrix, a topic on which we will focus in the
next chapter. An extension of this idea is to use three hidden layers [Kram 91].
Such a network performs a nonlinear principal component analysis. The major

drawback of such an architecture is that nonlinear optimization techniques have to
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5.18 Show that if matrices Sy, S are two covariance matrices, then the eigenvectors of

S,'ESz are orthogonal with respect 1o S1, that is,
T .
vi Sy = 8ij

S, can be simultaneously diagonalized (Appendix B).

Hint: Use the fact that 5y,
th a linear output node, minimizing the

5.19 Show that in a multilayer perceptron wi
squared error is equivalent with maximizing (3.32).
Hint: Assume the weights of the nonlinear nodes fixed and compute first the LS
optimal weights driving the linear output nodes. Then substitute these values into the

sumn of error squares cost function.

References

[Akai 74] Akaike H.© A new look atthe statistical model identification,” IEEE Transactions
on Automatic Control, Vol. 19(6), pp. 716-723, 1974.

[Bau 89] BaumE.B., Haussler D. “What size net gives valid generalization,” Neural Com-

putation, Vol. 1(1), pp. 151-160, 1989.
[Bish 95] Bishop C. Neural Networks for Pattern Recognition, Oxford University Press,

1995.
[Bour 88] Bourland H., Kamp Y. “Auto-association by multilayer perceptrons and si
value decomposition,” Biological Cybernetics, Vol. 59, pp. 291-294, 1988.

[Chat 97] Chatterjee C., Roychowdhury V. “On self-organizing algorithms and networks

for class-separability features,” IEEE Transactions on Newral Networks, Vol. 8(3),

pp. 663678, 1997.
[Devi 82] Devijver P.A., KittlerJ. Patrern
Cliffs, NT: Prentice Hall, 1982.
[Devr 96] Devroye L., GyorfiL.,LugosiG. A Probabilistic

Springer-Verlag, 1996.
[Fine 83] Finette S., Bleier A., Swindel W. “Breast tissue classification using diagnostic

ulrasound and pattern recognition techniques: 1. Methods of pattern recognition,”
Ultrasonic Imaging, Yol. 5, pp. 55-70, 1983.
[Fras 58] Fraser D.A.S. Statistics: An Introduction, John Wiley, 1958.
[Fuku 90] Fukunaga K. Introduction to Statistical Patrern Recognition, 2nd
Press, 1990.
[Ghah 94] Ghaharamani Z., Jordan M.I. “Supervised learning from incomplete data via the
EM approach,” in Advances in Neural Information Processing Systems (Cowan J.D.,
Tesauro G.T., Alspector J., eds.), Vol. 6, pp. 120-127, Morgan Kaufmann, San Mateo,

CA, 1994.
[Hama 96] Mamamoto Y,, Uchimura S.,
network classifiers in high dimension
and Machine Intelligence, Vol. 18(5), pp. 571374, 1996.
[Hube 81] Huber P.J. Robust Statistics, John Wiley, 1981.
[Hush 93] Hush D.R.. Homne B.G. “Progress in supervised neural networks,” Signal Pro-

cessing Magazine, Vol. 10(1), pp- 8-39, 1993.

ngular

Recognition; A Statistical Approach, Englewood

Theory of Pattern Recognition,

ed., Academic

Tomita S. “On the behaviour of artificial neural
al spaces,” IEEE Transactions on Pattern Analysis




Chapter 5: FEATURE SELECTION

[Jain 97] Jain A., Zongker D. “Feature selection: Evaluation, application, and small sam-
Ple performance,” /EEE Transactions on FPattern Analysis and Machine Intelligence,
Vol. 19(2}, pp. 153-158, 1997,

[Kitt 78] Kittler J. “Feature set search algorithms,”
Processing (Chen C.H,, ed.), pp. 41
The Netherlands, 1978,

[Kram 91] Kramer M.A. “Nonlinear principal component analysis using auto-associative
neural networks,” A/C Journal, Vol. 37(2), pp. 233-243, 1991,

[Kulb 51] Kullback S., Liebler R.A. “On information and sufficiency,” Annals of Mathe-
matical Statistics, Vol. 22, pp. 79-86, 1951.

[Lawe 66] Lawer E.L., Wood D.E. “Br
Research, Vol. 149(4), 1966.

[Leth 96] Lethtokanga S.M., Saarinen J., Huuhtanen P, Kaski K. “Predictive minimum
description length criterion for time series modeling with neural networks,” Neural
Compuration, Vol. 8, Pp. 583-593, 1996,

[Lee 93] LeeC., Landgrebe D.A. “Decision bound

ary feature extraction for nonparametric
classifiers,” IEEE Transactions on § ystems Man and Cybernetics, Vol. 23, pp. 433-
444, 1993,

[Lee 97] LeeC., Landgrebe D. “Decision boundary feature extraction for neural networks,”
IEEE Transactions on Neural Networks, Vol. 8(1), PD- 75-83, 1997.

[Lowe 90] Lowe D., Webb A R. “Exploiting prior knowledge in network optimization:
An illustration from medical prognosis,” Network: Computation in Neural S ystems,
Vol. 1(3), pp. 299-323, 1990,

[Lowe 91] Lowe D., Webb A.R. “Optimized featuy
feed-forward classifier networks,” IEEE Trans
Intelligence, Vol. 13(4), pp- 355-364, 1991,

[Mao 95] MaoJ., Jain A.K. “Artificial neural network

s for feature extraction and multivari-
ate data projection,” IEEE Transactions on Neural Nerworks, Vol. 6(2), pp. 296-317,
1997,

[Maus 90] Mausel PW., Kramber W.J., Lee JK, “Optimum band selection for supervised
classification of multispectra data,” Photogrammetric Engineering and Remote Sens-
ing Vol. 56, pp. 55-60, 1990.

[Mood 92] Moody I.E. “ The effective number of parameters: an analysis of generalization
and regularization in nonlinear learning systems” in Advances in Neural C omputa-

tion (Moody J.E., Hanson S.J., Lippman R.R,, eds.), pp. 847-854, San Mateo, C.A.,
Morgan Kaufman, 1992,

[Papo 91] Papoulis A. Probability Random Va
McGraw-Hill, 1991,

[Pudi 94] Pudil P., Novovicova J., Kittler J, “Floating search methods in feature selection,”
FPattern Recognition Letters, Vol. 15, Pp- 1119-1125, 1994.

[Raud 91 Raudys S.J., Jain A K. “Small size effects
ommendations for practitioners,” IEEE Transac
Intelligence, Vol. 13(3), Pp. 252-264, 1991,

[Rich 95] Richards J. Remote Sensing Digital Image Analysis, 2nd ed., Springer-Verlag,
1995,

in Pattern Recognition and Signal
-60, Sijthoff and Noordhoff, Alphen aan den Rj jn,

anch and bound methods: A survey,” Operational

Te extraction and the Bayes decision in
actions in Pattern Analysis and Machine

riables and Stochastic Processes, 3rd ed.,

in statistical pattern recognition: Rec-
tions on Pattern A nalysis and Machine

Section 5

[Riss 83] Ris
length,”
[Samm 69] S
actions o
[Seti 97] Setii
Neural N
[Su%4] Su K
projectio;
Vol. 2(1),
[Swai 73] Sw.
remote se
nition, pp
[Tou 74] Tou,
[Yu93] YuB.,
Pattern R
[Walp 78] Wa
tists, Mac
[Wang 98] Wa
tissues firc
tions on I
[Wata 97] Wat
recognitio
1997,
[Vapn 82] Vap
Verlag, 19
[Vapn 95] Vap,



tion, and small sam-
‘achine Inrelligence,

dgnition and Signal
slphen aan den Rijn,

ing auto-associative
" Annals of Mathe-
arvey,” Operational

redictive minimum
networks,” Neural

1 for nonparametric
» Vol. 23, pp. 433-

' neural networks,”
75
~ork optimization:

in Neural Systems,

Bayes decision in
lysis and Machine

tion and multivari-
6(2), pp. 296-317,

lon for supervised
and Remote Sens-

s of generalization
Neural Computa-
San Mateo, C.A.,
rocesses, 3rd ed.,

feature selection,”

recognition: Rec-
‘ysis and Machine

Springer-Verlag,

Section 3.9: A HINT ON THE VAPNIK-CHERNOVENKIS LEARNING THEORY 179

[Riss 83] Rissanen]. “A universal prior for integers and estimation by minimum description
length,” The Annals of Statistics, Vol. 11(2), pp. 416-431, 1983,

[Samm 69] Sammon J.W. “A nonlinear mapping for data structure analysis,” /[EEE Trans-
actions on Computers, Vol. 18, pp. 401-409, 1969.

[Seti 97] Setiono R., Liu H. “Neural network feature selector,” /EEE Transactions on
Neural Networks, Vol. 8(3), pp. 654-662, 1997.

[Su94] Su K.Y, Lee C.H. “Speech recognition using weighted HMM and subspace
projection approaches,” [EEE Transactions on Speech and Audio Processing,
Vol. 2(1), pp- 69-79, 1994.

[Swai 73] Swain P.H., King R.C. “Two effective feature selection criteria for multispectral
remote sensing,” Proceedings of the st International Conference on Pattern Recog-
nition, pp. 536-540, 1973.

[Tou 74] Tou J., Gonzalez R.C. Pattern Recognition Principles, Addison-Wesley, 1974.

(Yu 93] YuB., YuanB."A more efficient branch and bound algorithm for feature selection,”
Pattern Recognition, Vol. 26(6), pp. 883889, 1993.

[Walp 78] Walpole R.E., Myers R.H. Probability and Statistics for Engineers and Scien-
tists, Macmillan, 1978.

[Wang 98] Wang Y., Adali T, Kung 5.Y., Szabo Z. “Quantization and segmentation of brain
tissues from MR images: A probabilistic neural network approach,” [EEE Transac-
tions on Image Processing, Vol. 7(8), 1998.

[Wata 97] Watanabe H., Yamaguchi T., Katagiri S. “Discriminative metric for robust pattern
recognition,” JEEE Transactions on Signal Processing, Vol. 45(11), pp. 2655-2663,
1997.

[Vapn 82] Vapnik V.N. Estimarion of Dependencies Based on Empirical Data, Springer-
Verlag, 1982.

[Vapn 95] Vapnik V.N. The Nature of Statistical Learning Theory, Springer-Verlag, 1995.




