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Contextual classification

Anne Schistad Solberg

 Bayesian spatial models for classification

 Markov random field models for spatial context

Will use the notation from ”Random field models in image analysis” by g y y
Dubes and Jain, Journal of Applied Statistics, 1989, pp. 131-154, 
except section 2.3 and 2.4. 

F th t i t i th t f t i t d t ilFor the extension to using other types of constraints, more details can
be found in ”A Markov random field model for classification of
multisource satellite imagery”, by Solbert, Taxt and Jain.  
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Steps in supervised scene classificationSteps in supervised scene classification

 Feature extraction
 Classifier modelling
 If the features are good/information 

classes well separated the choice ofclasses well separated, the choice of 
classifier is not important

 Typical application-oriented study:
 Careful selection of features Image Database of Careful selection of features
 Classifier design:

 Choose a Gaussian ML 

Image Database of 
classes

classifier
 Use a MLP neural net or SVM 

(support vector machines)  to 
avoid making any 
assumptions of data 
distribution
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Classified image



Steps in classification modellingSteps in classification modelling
• How to proceed when the data/features are 

diffi ldifficult to separate:
– Choose a classifier with complex decision 

boundaries
U i i t i t th– Using prior constraints on the scene:

• Spatial context
• Multisensor data/data fusion
• Temporal information
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Background – contextual classificationBackground – contextual classification
• An image normally contains areas of similar 

classclass
– neighboring pixels tend to be correlated.

• Classified images based on a non-contextual 
model often contain isolated misclassified 
i l ( ll i )pixels (or small regions). 

• How can we get rid of this?
– Majority filtering in a local neighborhood

Remove small regions by region area– Remove small regions by region area
– Relaxation (Kittler and Foglein – see INF 

3300 Lecture 23.09.03)
– Bayesian models for the joint distributionBayesian models for the joint distribution 

of pixel labels in a neighborhood.
• How do we know if the small regions are 

correct or not?
L k t th d t i t t ti l d l– Look at the data, integrate spatial models 
in the classifier.
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Relation between classes
of neighboring pixels

• Consider a single pixel i. 
• Consider a local neighborhood Ni centered 

around pixel i. 
• The class label at position i depends on• The class label at position i depends on 

the class labels of neighboring pixels. 
• Model the probability of class k at pixel i 

i th l f th i hb i

4-neighborhood

given the classes of the neighboring 
pixels.

• More complex neighborhoods can also be p g
used. 

8-neighborhoodg
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Reminder pixelwise classificationReminder – pixelwise classification
• Prior probabilities P(r) for each class

W h S l• We have S classes. 
• Bayes classification rule: classify a feature vector yi (for pixel i)  

to the class with the highest posterior probability P(r| yi) 
P(r| yi) = max P(s| yi)

s=1,...S

• P(s| yi ) is computed using Bayes formula
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class (e.g. Gaussian distribution)(corresponds to p(yi| xi=s) 
here)

• This involves only one pixel i. 
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A Bayesian model for ALL pixels in the imageA Bayesian model for ALL pixels in the image

Y = {y1,...,yN}    Image of feature vectors to classify
X { } Cl l bel of pi elX = {x1,...xN}    Class labels of pixels

• Classification consists choosing the class that maximizes the posterior 
probabilities for ALL pixels in the imageprobabilities  for ALL pixels in the image


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)|(
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• Maximizing P(X|Y) with respect to x1,.....xN is equivalent to maximizing 
P(Y|X)P(X) i h d i d d d h l


classes all

X)P(X)|P(Y
)|( YXP

P(Y|X)P(X) since the denominator does not depend on the classes x1,.....xN .
• Note: we are now maximizing the class labels of ALL the pixels in the image 

simultaneously. 
Thi i bl i l i fi di N l l b l i t l• This is a problem involving finding N class labels simuntaneously.

• P(X) is the prior model for the scene. It can be simple prior probabilities, or 
a model for the spatial relation between class labels in the scene.
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Two kinds of pixel dependencyTwo kinds of pixel dependency
• Interpixel feature 

dependency:
– Dependency between 

the feature vectors. Model the joint 
di t ib ti f th

the feature vectors.

• Interpixel class 
d d

distribution of the 
gray level of 

neighboring pixels 
p(y1,y2|x1,x2)dependency:

– Dependency between 
class labels of 

p(y1,y2|x1,x2)
y1,and y2 are the 
feature vectors

x1 and x2 are the 
l l b l

class labels of 
neighboring pixels.

Th ill b

class labels 
Model the 

probability for 
the class labels

These two types will now be 
explained more formally.

the class labels 
p(x1|x2)
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Background: A little statisticsBackground: A little statistics
• Consider two events A and B.
• P(A) and P(B) is the probability of events A and B.
• P(B|A) is the conditional probability of B assuming A, and is 

defined as:defined as:
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• P(A,B) is the joint probability of the two events A and B. 
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Interpixel feature dependencyInterpixel feature dependency
• P(y1,y2,....yN | x1, x2,...., xN) is generally the joint probability of 

b i f i l i i 1 N i hobserving feature vectors y1,....yN at pixel positions 1,...N given the 
underlying true class labels of the pixels. 

• The observed feature vector for pixel i might depend on the e obse ed eatu e ecto o p e g t depe d o t e
observed feature vector for pixel j (neighboring pixels)

• We will not consider such models (If you are interested, see Dubes 
and Jain 1989)and Jain 1989).

• If the feature vector for pixel i is independent of all the other pixels, p p p ,
this can be simplified as:

)|()|()|()|()|(
N

PPPPXP  )|()|()|()|()|,....( 221111 NNiiiN xyPxyPxyPxyPXyyP 

Spatial Context 10



Interpixel class dependencyInterpixel class dependency
• The class labels for pixel i depends on the class labels of 

i hb i i l b h i hb ’ b d fneighboring pixels, but not on the neighbors’ observed feature 
vectors.
– Such models are normally used for classification.Suc ode s a e o a y used o c ass cat o
– Reasonable if the features are not computed from 

overlapping windows
R bl if th d t k l t d– Reasonable if the sensor does not make correlated 
measurement errors

• What this means is that when we estimate the class label of 
pixel i, we think that it will be valuable to know the class labels 
of the neighboring pixels (the image consists of regions withof the neighboring pixels (the image consists of regions with 
partly continuous class type). 
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Introduction to Markov random 
fi ld d llifield modelling

• Two elements are central in Markov modelling:
– Gibbs random fields
– Markov random fields

• There is an analogy between Gibbs and Markov 
random fields as we soon will see.

• This will result in an energy function minimization 
problem. 
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Discrete Gibbs random fields (GRF) -
Global model

• A discrete Gibbs random field gives a global model for the pixel 
l b l i ilabels in an image:

)/Z-U(e)( xxX P
• X is a random variable, x is a realization of X.
• U(x) is a function called energy function

)(

• Z is a normalizing constant
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Neighborhood definitions (for MRFs)Neighborhood definitions (for MRFs)
• Pixel site j is a neighbor of site i≠j if the probability 

depends on xj, the value of Xj. 
• A clique is a set of sites in which all pairs of sites are mutual

), all|( ikxXxXP kkii 

• A clique is a set of sites in which all pairs of sites are mutual 
neighbors. The set of all cliques in a neighborhood is denoted 
Q.

• A potential function or clique function Vc(x) is associated with 
each clique c.

• The energy function U(x) can be expressed as a sum of• The energy function U(x) can be expressed as a sum of 
potential functions   




Qc

cVU )(xx

• 8-neighborhoods are commonly used, but more complex 
neighborhoods can also be defined.
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Neighborhoods and cliquesNeighborhoods and cliques

2 1 2

1 t 11 t 1

2 1 2

1st and 2nd order
neighbors of pixel t Clique types for a 2ndg p

R k ll l li i l i t

Clique types for a 2nd 
order neighborhood

Remark: we normally only use cliques involving two 
sites. The model is then called a pairwise interaction 
model Then a clique is just a pair of neighboring
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model. Then a clique is just a pair of neighboring 
pixels.

Common simple potential functionsCommon simple potential functions
• Derin and Elliott’s model:



• Ising’s model:







otherwise 

classsame  thehave ccliquein sites allif 
)(

c

c
cV




x

• Ising s model: 

),()( kic xxIV x

�  controls the degree of spatial smoothing
– I(ci,ck) = -1 if ci = ck and 0 otherwise
– This corresponds to counting the number of pixels in the 

neighborhood assigned to the same class as pixel i.

• These two models are equivalent (except a different scale factor) 
for second order cliques
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Discrete Markov random fields –
l l i t ti d llocal interaction models

• A Markov random field (MRF) is defined in terms of local 
iproperties.

• A random field is a discrete Markov random field with respect 
to a given neighborhood if the following properties are to a g e e g bo ood t e o o g p ope t es a e
satisfied:
1. Positivity: P(X=x)>0 for all x
2 M k t2. Markov property:

P(Xt=xt|XS|t=xS|t)=P(Xt=xt|Xt =xt)
S|t refers to all M pixel sites except site tS|t refers to all M pixel sites, except site t
t refers to all sites in the neighborhood of site t

3. Homogeneity: P(Xt=xt|Xt =xt) is the same for all sites t.
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Relationship between MRF and GRFRelationship between MRF and GRF
• A unique GRF exists for every MRF field and vice-

versa if the Gibbs field is defines in terms of cliques
of a neighborhood system.

• Advantage: a global model can be specified using
local interactions only.
W l l f ti i l i i l i• We can use a local energy function involving pixels in 
a neighborhood. 
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Back to the initial modelBack to the initial model…
Y = {y1,...,yN}    Image of feature vectors to classify
X = {x1,...xN}    Class labels of pixels
Task: find the optimal estimate x’ of the true labels x* for all pixels 

in the imagein the image

• Classification consists choosing the class labels x’ that maximizes 
the posterior probabilities  


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• We assume that the observed feature vectors are conditionally
independent:

  



M

i
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)|(xX|yY

• We use a Markov field to model the spatial interaction between
the classes (the term P(X=x)).
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• Rewrite P(Yi=yi|Xi=xi) as
)|(

1

1
)( XYUdatae

Z
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• Maximizing this is equivalent to minimizing  

)()|( XUXYUdata 
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Udata(X|C)Udata(X|C)
• Any kind of probability-based classifier can be used, for example a 

G i l ifi i h k l d di i l fGaussian classifier with a k classes, d-dimensional feature vector, 
mean k and covariance matrix k:
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Finding the labels of
ALL pixels in the image

• We still have to find an algorithm that is able to find an estimate
x’ for all pixelsx’ for all pixels. 

• Alternative optimization algorithms are:
– Simulated annealing (SA) 

• Can find a global optimum
• Is very computationally heavy

– Iterated Conditional Modes (ICM)– Iterated Conditional Modes (ICM)
• A computationally attractive alternative
• Is only an approximation to the MAP estimate

– Maximizing the Posterior Marginals (MPM)

• We will only study the ICM algorithm which converges only to a• We will only study the ICM algorithm, which converges only to a 
local minima and is theoretically suboptimal, but
computationally feasible. 

Spatial Context 23

ICM algorithmg

1. Initilalize xt, t=1,...N as the non-contextual classification by 
fi di h l hi h i i P(Y |X )finding the class which maximize P(Yt=yt|Xt=xt).

2. For all pixels t in the image, update      with the class that 
maximizes

tx̂
a es

)ˆ|()|( tttttttt xxXPxXyYP   X

3. Repeat 2 n times

Usually <10 iterations are sufficientUsually <10 iterations are sufficient 
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ICM in detailICM in detail
Initilalize xt, t=1,...N as the non-contextual classification by finding the class which maximize

P(Yt=yt|Xt=xt), assign it to classified image(i,j)P(Yt yt|Xt xt), assign it to classified_image(i,j)
For iteration k=1:maxit do

For i=i:N,j=1:N (all pixels) do
minimum_energy=High_number;
For class s=1:S doFor class s 1:S do

Udata = -log (P(Yt=yt|Xt=s))
Ucontxt=0; 
nof_similar_neighbors=0;
for neighb=1:nof neighborsfor neighb 1:nof_neighbors

if (classified_image(neighb)=s) //neighbor and s of same class
++nof_similar_neighbors;

Ucontxt = -beta*nof_similar_neighbors;
energy = Udata + Ucontxt;energy  Udata  Ucontxt;
if (energy < minimum_energy)

minimum_energy = energy;
bestclass = s;

new classified image(i,j) = bestclass;_ _ g ( ,j) ;
if (new_classified_image(i,j)!=classified_image(i,j))

++nof_pixels_changed;
if nof_pixels_changed<min-limit

break;
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;

ICM commentsICM comments
• P(Yt=yt|Xt=xt) can be computed based on various t t t t

software packages, stored, and used in the ICM 
algorithm. 

• For an image with S classes, this can be stored in a 
S-band image.
F h it ti l th l b l h• For each iteration, only the labels xi change. 

Wh h ld t l t t th– Why should you use a temporal array to store the 
updated labels at iteration k, and a separate array 
for the labels at the next iteration k+1?for the labels at the next iteration k+1?
• Hint: try this on a checkerboard image.
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How to choose the smoothing parameter How to choose the smoothing parameter 

•  controls the degree of spatial smoothing
•  normally lies in the range 1≤  ≤2.5
• The value of  can be estimated based on formal parameter 

estimation procedures (heavy statistics but the best way!)estimation procedures (heavy statistics, but the best way!)
• Another approach is to try different values of , and choose the 

one that produces the best classification rate on the training 
d t tdata set. 

Spatial Context 27

An energy function for preserving edgesAn energy function for preserving edges

• When  is large, the Ising model tends to smooth the image 
across edges.

• We can add another energy term to penalize smoothing edges 
by introducing line processes (Geman and Geman 1984)by introducing line processes (Geman and Geman 1984).

• Consider a model where edges can occur between neibhboring 
pixels and let l(i,j)  represent if there is an edge between pixel i 

d i l jand pixel j : 
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Line processesLine processes
• l(i,j)=0 if there is no edge between pixel i and j, and 1 of 

there is an edgethere is an edge 
• There is an edge if pixels i and j belong to diffent classes, 

if ci≠cj

• We can define an energy function penalizing the number 
of edges in a neihborhood

 jiliU )()( 

• and let





iNk

lline jiliU ),()( 

• and let 

)()()|( CUCUspatialCXUdataU line

• This will smooth the image, but preserve edges much 
better.
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Test image 1Test image 1

• A Landsat TM image
• Five classes:

– Water– Water
– Urban areas
– Forest
– Agricultural fields
– Vegetation-free 

areasareas
• The image is expected 

to be fairly well 
approximated by a 
Gaussian model

Spatial Context 30



Classification results, Landsat TM 
iimage

M h d T i i d T d T dMethod Training data,
Noncontextual

Test data,
Noncontextual

Test data,
contextual

Gaussian 90 1 90 5 96 3Gaussian 90.1 90.5 96.3

Multilayer
perceptron

89.7 90.0 95.5
perceptron
(neural net
classifier)

Could we use a SVM classifier?
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Data set 2

• ERS SAR image
• 5 texture features 

from a lognormalfrom a lognormal 
texture model used

• 5 classes:
– Water
– Urban areas
– ForestForest
– Agricultural fields
– Vegetation-free 

areas
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Classification results,  SAR 
iimage

Method Training data,
Noncontextual

Test data,
Noncontextual

Test data,
contextual

Gaussian 63.7 63.4 67.1

Multilayer 66.6 66.9 70.8
perceptron
(neural net)

Tree classifier 70 3 65 0 76 1Tree classifier 70.3 65.0 76.1

Spatial Context 33

More on different energy functionsMore on different energy functions
• MRF local energy terms can be used to model other 

types of context to (see Solberg 1996)
– Multitemporal classification
– Consistency with an existing map or previous 

classification
– Consistency with other types of GIS data
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An energy function for 
f h hfusion with a thematic map

• Assume that a map or previous classification of the scene 
iexists. 

• This map can be partly inaccurate and needs to be 
updated. updated

• Let Cg={cg
1,...,cg

N) be an old map of the area. 
• Consider a set of S different classes. The probability for a 

h f l t b ifi d t bl fchange from class s1 to s2 can be specified as a table of 
transitions (next page) Pr(xi|cg

i).
• An additional energy term can begy


odneighborho

g
iigG cxU )|Pr(

odneighborho
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Example of allowed transitionsExample of allowed transitions 
Urban Forest Agricultural Bare soil Water

Urban 1.0 0.0 0.0 0.0 0.0

Forest 0.1 0.7 0.1 0.1 0.0

Agricultral 0.1 0.1 0.7 0.1 0.0

Bare soil 0.1 0.1 0.1 0.7 0.0

Water 0.0 0.0 0.0 0.0 1.0
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An energy term for crop ownership dataAn energy term for crop ownership data
• På norsk/In norwegian: jordskiftekart eller bestandskart av grenser 

i li h f d i likregioner som er en naturlig enhet og som ofte drives likt.
• Let a line process l(i,j) define if pixels i and j are assigned to the

same class (l(i,j)=0) or not (l(i,j)=1) in the class label image.sa e c ass ( ( ,j) 0) o ot ( ( ,j) ) t e c ass abe age
• Let the crop ownership map be represented by a line process.
• An edge site in this map indicates if the two pixels (i,j) it involves

th i (l (i j) 0) t (l(i j) 1)are on the same region (lg(i,j)=0) or not (l(i,j)=1).
• An energy term seeking consistency with the crop ownership map

is:
•

otherwise  1  and  ),(),(  if 0)),(,(  where

)),(,(

jiljiljilxW

jilxWU

gi

odneighborho
imapmap



 
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Example agricultural classificationExample agricultural classification
• Optical (Landsat) and SAR 

i f i lt l itimage of agricultural site. 
• Classes: wheat, sugar beet, 

potatoes, carrots, grass, p , , g ,
stubble, bare soil.

• Field border map also 
availableavailable.
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SAR on top, Landsat bottom



Example agricultural classificationExample agricultural classification

Result based
on only optical

Result based
on optical+SAR

No context

R lt b d
Result based

on optical+SAR
MRF

Result based
on optical+SAR

MRF with field borders
Field borders overlaid 

i hitin white

SAR Optical Combined –
noncontextual

Combined – MRF Combined – MRF 
with field border 
map
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59.9 70.3 71.3 73.0 79.6

Learning goalsLearning goals
• Understand the energy function combining the data 

term and the contextual term.
• Understand the Ising model
• Understand the ICM algorithm
• Realize that other types of spatial constrains can be 

added by modifying the energy function.
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