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Today:Today: 

• Feature transformation through principal
component analysisp y

• Fisher’s linear discriminant function
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Linear feature transformsLinear feature transforms
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Signal representation vs classificationSignal representation vs classification

• Principal components analysis (PCA)• Principal components analysis (PCA)
– - signal representation, unsupervised
– Minimize the mean square representation 

error
Linear discriminant analysis (LDA)• Linear discriminant analysis (LDA)

– -classification, supervised
– Maximize the distance between

the classes
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Correlation matrix vs. 
covariance matrixcovariance matrix

 is the covariance matrix of x• x is the covariance matrix of x

   T
x xxE  

• Rx is the correlation matrix of x

 
R if 0

   T
x xxER 

• Rx=x if x=0. 
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Principal component or
K h L t fKarhunen-Loeve transform

• Let x be a feature vector• Let x be a feature vector.
• Features are often correlated, which might lead to 

redundancies.redundancies.
• We now derive a transform which yields uncorrelated

features.
• We seek a linear transform y=ATx, and the yis should be 

uncorrelated. 
Th l t d if E[ (i) (j)T] 0 i j• The yis are uncorrelated if E[y(i)y(j)T]=0, ij.

• If we can express the information in x using uncorrelated
features we might need fewer coefficientsfeatures, we might need fewer coefficients.
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Principal component transformPrincipal component transform
• The correlation of Y is described by the correlation matrix• The correlation of Y is described by the correlation matrix

RY=E[yyT]=E[ATxxTA]=ATRxA            Rx is the correlation matrix of X
Rx is symmetric, thus all eigenvectors are orthogonal.

• We seek uncorrelated components of Y, thus Ry should be 
diagonal.diagonal. 

From linear algebra:
• Ry will be diagonal if A is formed by the orthogonal 

f T h
y

eigenvectors ai, i=0,...,N-1 of Rx:    Ry=ATRxA=, where 
is diagonal with the eigenvalues of Rx, i, on the diagonal.

• We find A by solving the equation ATRxA= (usingWe find A by solving the equation A RxA  (using 
Singular Value Decomposition (SVD)).

• A is formed by computing the eigenvectors of Rx. Each 
i t ill b l f A
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eigenvector will be a column of A.



Mean square error approximationMean square error approximation

• x can be expressed as a combination of all N basis vectors:• x can be expressed as a combination of all N basis vectors: 

xaiyaiyx T
i
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)(  where,)(
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0
• An approximation to x is found by using only m of the basis vectors:

i0





1

)(ˆ
m

iaiyx a projection into the m-dimensional
subspace spanned by m eigenvectors

• The PC-transform is based on minimizing the mean square error
associted with this approximation.

0i subspace spanned by m eigenvectors

• The mean square error associated with this approximation is 
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• Furthermore, we can find that
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• The mean square error is thus 
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• The error is minimized if we select the eigenvectors 
corresponding to the m largest eigenvales of the correlation 
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p g g g
matrix Rx.

• The transformed vector y is called the principal components of 
x. The transform is called the principal component transform orx. The transform is called the principal component transform or 
Karhunen-Loeve-transform.
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Principal component of the 
i t icovariance matrix

Alternatively we can find the principal components of• Alternatively, we can find the principal components of 
the covariance matrix x.

• If we have software for computing principal• If we have software for computing principal 
components  of Rx, we can compute principal 
components from x by first setting z=x- x and p x y g x
compute PC(z). 

• The principal component transform is not scale 
invariant, because the eigenvectors are not invariant. 
Often, normalization to data with zero mean and unit 
variance is done prior to applying the PC-transform.
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Principal components 
d l iand total variance

Assume that E[x] 0• Assume that E[x]=0. 
• Let y=PC(x).

F R k th t th i f t• From Ry we know that the variance of component yj
is j.

• The eigenvalues  of the correlation matrix R is thus• The eigenvalues j of the correlation matrix Rx is thus 
equal to the variance of the transformed features. 

• By selecting the m eigenvectors with the largest• By selecting the m eigenvectors with the largest 
eigenvalues, we select the m dimensions with the 
largest variance.g

• The first principal component will be along the 
direction of the input space which has largest 
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variance.



Geometrical interpretation of 
i i l tprincipal components

• The eigenvector• The eigenvector 
corresponding to the 
largest eigenvalue is the 
di ti i di i ldirection in n-dimensional 
space with highest 
variance.

• The next principal 
component is orthogonal 
to the first and along theto the first, and along the 
direction with the second 
largest variance.

Note that the direction with the highest variance is 
NOT related to separability between classes
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NOT related to separability between classes. 

PCA examplePCA example

3d Gaussian with parameters3d Gaussian with parameters 
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Principal component imagesPrincipal component images

For an image with n bands we can compute the• For an image with n bands, we can compute the 
principal component transform of the entire image X.

• Y=PC(X) will then be a new image with n bands but• Y=PC(X) will then be a new image with n bands, but 
most of the variance is in the bands with the lowest 
index (corresponding to the largest eigenvalues).( p g g g )

INF 5300 13

Principal component imagesPrincipal component images

For an image with n bands we can compute the• For an image with n bands, we can compute the 
principal component transform of the entire image X.

• Y=PC(X) will then be a new image with n bands but• Y=PC(X) will then be a new image with n bands, but 
most of the variance is in the bands with the lowest 
index (corresponding to the largest eigenvalues).( p g g g )
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PCA example original imagePCA example – original image
Satellite image from Kjeller• Satellite image from Kjeller

• 6 spectral bands with different
wavelengths

1 Blue 0.45-0.52 Max. penetration of 
water

2 Green 0.52-0.60 Vegetation and 
chlorophyll

3 Red 0.63-0.69 Vegetation type

4 Near-IR 0.76-0.90 Biomass

5 Mid-IR 1.55-1.75 Moisture/water content
in vegetation/soil

7 Mid-IR 2.08-2.35 Minerals

INF 5300 15

7 Mid IR 2.08 2.35 Minerals

Principal component imagesPrincipal component images

Principal component 1 
Principal component 2 Principal component 3 

Principal component 4 Principal component 5
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Principal component 4 Principal component 5 Principal component 6 



Example: inspecting the eigenvaluesExample: inspecting the eigenvalues

The representation error we get
with m of the N PCA-
components is given as
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Plotting

will give indications

i

will give indications
on how many
features are needed
for representation
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PC and compressionPC and compression
• PC transform is optimal transform with respect to preserving the• PC-transform is optimal transform with respect to preserving the 

energy in the original image.
• For compression purposes, PC-transform is theoretically optimal 

with respect to maximizing the entropy (from information 
theory). Entropy is related to randomness and thus to variance.

• The basis vectors are the eigenvectors and vary from image to• The basis vectors are the eigenvectors and vary from image to 
image. For transmission, both the transform coefficients and the 
eigenvectors must be transmitted.
PC t f b bl ll i t d b th• PC-transform can be reasonably well approximated by the 
Cosinus-transform or Sinus-transform. These use constant basis 
vectors and are better suited for transmission, since only the 
coefficients must be transmitted (or stored).
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PC vs. Fisher’s linear 
di i i t t fdiscriminant transform

• The principal component transform has no information about• The principal component transform has no information about 
the classes in the data. 

• The PC-projection might not be helpful to improve class 
separability.

• From an input vector x with dimension m, PC-transform gives us 
a projection y with dimensions 1 m (depending on how manya projection y with dimensions 1,...,m (depending on how many 
eigenvalues we include).

• A projection with Fishers linear discriminant gives us y with 
di i 1 K 1 h K i th b f ldimensions 1,...,K-1, where K is the number of classes. 

• Fishers linear discriminant find the projection that maximizes 
the ratio of between-class to within-class scatter. 
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Fisher’s Linear DiscriminantFisher s Linear Discriminant

• Goal:
– Reduce dimension while preserving classp g

discriminatory information

• Strategy (2 classes):
– We have a set of samples x={x1, x2, …, 

xn} where n1 belong to class 1 and the
rest n2 to class 2. Obtain a scalar value
by projecting x onto a line y: y=wTxby projecting x onto a line y: y=wTx

– Challenge: find w that maximizes
the separability of the classesthe separability of the classes
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A simple criterion function: 
2 f t d 2 l2 features and 2 classes

• To find a good projection vector, we need to define a measure ofTo find a good projection vector, we need to define a measure of
separation between the projections . This wil be the criterion
function J(w)

• The mean vector of each class in the spaces spanned by x and y are

• A naive choice would be projected mean difference, 

This criterion does not 
consider variance
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A criterion function including variance:
2 f t d 2 l2 features and 2 classes

• Fisher’s solution: maximize a function• Fisher s solution: maximize a function
that represents the difference between
the means, scaled by a measure of the
within class scatter

• Define classwise scatter (similar to 
variance)

• is within class scatter
• Fisher’s criterion is then

• We look for a projection whereWe look for a projection where
examples from the same class are
close to each other, while at the same 
time projected mean values are as far 

t ibl
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apart as possible.



Introducing general scatter matricesIntroducing general scatter matrices

In M dimensional space let us now consider matrices• In M-dimensional space, let us now consider matrices
describing the variance:
– Variance INSIDE each classVariance INSIDE each class
– Variance BETWEEN the classes (how well separated are the

classes)
– The total variance in the data set is constant and 

independent of any class labels
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Scatter matrices M classesScatter matrices – M classes
• Within-class scatter matrix:

   

M

i
iiw
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SPS 
1

)(

• Between-class scatter matrix:

   Tiii xxES  

Variance within each class

Between class scatter matrix:

  


 T
ii

M

i
ib PS 00

1

)( 

Mixture or total scatter matrix:





M

i
i

1
0  Distance between the classes

• Mixture or total scatter matrix: 
   T

m xxES 00  
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Variance of feature with

respect to the global mean



Some matrix algebraSome matrix algebra
• M is a symmetric ll matrix• M is a symmetric ll matrix

• |M| is the determinant of M

• M can be expressed in terms of eigenvalues i and eigenvectors
vi. i

• |M| is nonzero only if the matrix has full rank (all eigenvalues
are nonzero)are nonzero)

• trace(M) is equal to the sum of eigenvalues of M.
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Relation between eigenvalues and
th tt f t ithe scatter of a matrix

• The eigenvalues associated with an eigenvector tells how strong
the contribution along this direction is.

• A scalar measure of the scatter matrix M is its determinant (the
product of the eigenvalues). This gives us ONE measure of the

tt i th t iscatter in the matrix.

• If M is a covariance matrix, |M| is a measure of the l-, | |
dimensional hypervolume of the data. If the data lies in a 
subspace, |M| will be zero.

• For a covariance matrix M, trace(M) is the sum of the
eigenvalues and thus a measure of the spread or scatter in A.
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The total scatter is• The total scatter is 
Sm=Sw+Sb

• Consider the criterion function

 mStrace
J Sum of the diagonal elemens in S 

 

meanglobalaroundvarianceofsum

1



w

m

Strace
J  Sum of the diagonal elemens in Sm

 class inside  varianceof sum

mean global around varianceof sum

• J1 will be large when the variance among the global mean
is large compared to the within-class variance.
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Better scatter criteria functions –
J2 d J3J2 and J3

S
mw

w

m SS
S

S
J 1

2


 bw SStraceJ 1
3



• J2 and J3 are invariant to linear transformations.
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Fisher’s linear discriminantFisher s linear discriminant
• Fisher’s linear discriminant is a transform that uses the• Fisher s linear discriminant is a transform that uses the

information in the training data set to find a linear combination 
that best separates the classes. 

• It is based on the criterion J3:

 
M bw SStraceJ 1

3



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M

i
iiw SPS
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scatter class-within)(

M

• From the feature vector x, let Sxw and Sxb be the within-class

   scatter classbetween)( 00
1




T
ii

i
ib PS 

From the feature vector x, let Sxw and Sxb be the within class
and between-class scatter matrix.

• The scatter matrices for the transformed variable y=ATx are:
T T
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Syw=ATSxwA Syb=ATSxbA

• In subspace y J becomes:• In subspace y, J3 becomes:

   






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
ASAASAtraceJ b

T
w

T 1
3

• Problem: find A such that J3 is maximized. 
• Solution: set



Solution: set 
 
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• The scatter matrices S and S are symmetric and can thus be• The scatter matrices Syw and Syb are symmetric, and can thus be 
diagonalized by the linear transform (appendix B)

DBSBIBSB yb
T

yw
T  and

• B is a  ll matrix, I the identity matrix, and D an ll diagonal 
matrix. I and D are the scatter matrices of the transformed vector

DBSBIBSB ybyw  and 

xAByBy TTT ˆ
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• J3 is invariant under linear transformations and:

     111 TT  

• Furthermore
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• Furthermore, 

  ABCCDCSS xbxw    where,1

• Because D is diagonal, this is an eigenvalue-problem, 
• D must have the eigenvalues of on the diagonal

 xbxw

 SS 1• D must have the eigenvalues of on the diagonal 

• C must have the corresponding eigenvectors of

 xbxwSS 1

 xbxwSS 1
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as columns... 



Note that M• Note that

i f M (M f l ) t i f k 1

  Tii
i

ixb PS 00
1

)(  


is a sum of M (M=nof. classes) matrices of rank 1, 
only m-1 of these elements are independent, 
meaning that the rank of S b is M-1 or less (no moremeaning that the rank of Sxb is M 1 or less (no more 
than M-1 eigenvalues are nonzero). 

• This means also that has rank M-1 or less.
bSS 1This means also that has rank M 1 or less.

• Fisher’s discriminant transform can give us a l-
dimensional projection, where lM-1.

xbxwSS

p j ,
– Note: with 30 features (m=30) and 5 classes (M=5) this

gives us a projection with dimension 4 or less. 
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Computing Fishers linear discriminantComputing Fishers linear discriminant

F l M 1• For l=M-1:
– Form a matrix C such that its columns are the M-1 

eigenvectors of xbxwSS 1eigenvectors of
– Set

xbxwSS

xCy Tˆ

– This gives us the maximum J3 value.
– This means that we can reduce the dimension from m to M-

1 without loss in class separability power (but only if J is a1 without loss in class separability power (but only if J3 is a 
correct measure of class separability.)

– Alternative view: with a Bayesian model we compute the
probabilities P(i|x) for each class (i=1,...M). Once M-1 
probabilities are found, the remaining P(M|x) is given 
because the P(i|x)’s sum to one.
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Computation: Case 2: l<M 1Computation: Case 2: l<M-1

Form C by selecting the eigenvectors corresponding• Form C by selecting the eigenvectors corresponding
to the l largest eigenvalues of

1

• We now have a loss of discriminating power since

xbxwSS 1

• We now have a loss of discriminating power since

xy JJ ,3ˆ,3 y ,,
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Comments on Fishers discriminant ruleComments on Fishers discriminant rule

In general projection of the original feature vector to• In general, projection of the original feature vector to 
a lower dimensional space is associated with some
loss of information.loss of information.

• Although the projection is optimal with respect to J3, 
J3 might not be a good criterion to optimize for a 3 g g p
given data set. (Note that J3 is a kind of sum of a 
product of between-class and within-class scatter, 

h h i ll l )where the sum is over all classes) 
• Minimizing J3 is not equivalent to minimizing the

classification e oclassification error. 
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Limitations of Fisher’s discriminantLimitations of Fisher s discriminant

• It produces at most C-1 feature projectionsIt produces at most C 1 feature projections
• It is parametric, since it assumes unimodal gaussian likelihoods

• It will fail when the discriminatory information is not in the mean but in the
variance of the datavariance of the data
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Fisher’s discriminant examplep

Original data
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Best 2 PCABest 2 Fisher’s



Fisher’s linear discriminant on
th L d t ithe Landsat image

1. Fisher feature 2. Fisher feature 3. Fisher feature
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Scatter plots for the example –
O i i l t l b dOriginal spectral bands
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Scatter plots for the example –
PCA tPCA-components

PCA 1 and 2 PCA 1 and 3 PCA 2 and 3
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Scatter plots for the example –
Fi h tFisher-components

Fisher  1 and 2 Fisher 1 and 3 Fisher 2 and 3
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Comparison of
ll l ifi tioverall classification accuracy

All 6 original spectral bands: 91 9% correct• All 6 original spectral bands: 91.9% correct
classification

• PCA components 1-3: 90 8% correct• PCA components 1-3: 90.8% correct
• Fisher components 1-3: 91.5% correct
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Literature on pattern recognitionLiterature on pattern recognition

Updated review and statistical pattern recognition:• Updated review and statistical pattern recognition:
– A. Jain, R. Duin and J. Mao: Statistical pattern recognition: a review, IEEE Trans. 

Pattern analysis and Machine Intelligence, vol. 22, no. 1, January 2001, pp. 4--

Cl i l PR b k• Classical PR-books
– R. Duda, P. Hart and D. Stork, Pattern Classification, 2. ed. Wiley, 2001
– B. Ripley, Pattern Recognition and Neural Networks, Cambridge Press, 1996.
– S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, 2006.
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