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Topics from Annes lecturesTopics from Annes lectures

Snakes• Snakes
• Feature selection

F t t f• Feature transforms
– Principal component transform
– Fisher’s linear discriminantFisher s linear discriminant

• Support vector machines classification
• Contextual classification• Contextual classification

• Oral exam: 20min with questions from 2-3 of these• Oral exam: 20min with questions from 2-3 of these
topics. 
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SNAKES: The energy functionSNAKES: The energy function

• Simple snake with only two terms (no termination• Simple snake with only two terms (no termination 
energy):
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• We need to approximate both the first derivative andWe need to approximate both the first derivative and 
the second derivative of vs, and specify how Eedge will be 
computed.  
Th k i i iti li d f t ti iti• The snakes is initialized from a starting position, e.g. a 
circle with given center and radius.

• How should the snake iterate from its initial position?
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SNAKES: A simple image termSNAKES: A simple image term


1

))(( dPE

• A common way of defining P(x,y) is:


0

))(( dssvPEimage

y g ( ,y)

)),((),( yxIGcyxP  

• c is a constant,   is a gradient operator, G is a Gaussian filter, 
and I(x,y) the input image. Note the minus sign as the gradient is 
high for edges.g g
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SNAKES:
A i ti th fi t d i ti fApproximating the first derivative of vs

Consider a local point s on the curve.
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SNAKES:
fApproximating the second derivative of vs

Why is this correct?
INF 2310 – Konvolusjon og ikke-lineære filtere (1.3.2011)

Hint: Check the derivation
of the 2D Laplace operator
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To answer a question regarding this foil
This is not a course in differential equations, so understanding thisThis is not a course in differential equations, so understanding this

is not so important

• Assume that we seek an iterative solution• Assume that we seek an iterative solution.
• Assume that we have one solution 

))(ˆ)(ˆ()(ˆ sysxsv 

• If this solution is perturbated slightly by v(s), the solution that 
h i i t ti f

))(),(()( sysxsv 

has minimum energy must satisfy:
 

0
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d

svsvdEsnake
The new solution should be a minimum,
so the derivative must be 0.

• The slight spatial perturbation is defined as v(s)=(x(s), y(s)). y

• The perturbed snake solution is: 

))()(ˆ),()(ˆ()()(ˆ ssyssxsvsv yx  
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SNAKESSNAKES
• We have two equations• We  have two equations

Ax=fx(x,y)    
Ay=fy(x,y)y y( ,y)

• These means that the snake energy should be balanced by the 
edge energy. 
W d it ti h t t l ti th t i l b ll• We need an iterative approach to get a solution that is globally 
optimal (one single iteration by computing A-1 gives a local 
optimal solution). 

• An iterative solution must have snake points that depend on 
time, a snake that can move. 

• Let x<i> y<i> denote the solution at time i• Let x<i>,y<i> denote the solution at time i. 
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SNAKES:The Kass snake algorithmSNAKES:The Kass snake algorithm

• Initialize the snake by selecting an initial countour• Initialize the snake by selecting an initial countour
• Compute the initial energy terms and the gradient.
• Select parametersp
• Given the solution at iteration i x<i>,y<i>, compute x<i+1>,y<i+1>:
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SNAKES:The Kass differential equationsSNAKES:The Kass differential equations

• The coordinates of the snake should be found by solving the• The coordinates of the snake should be found by solving the 
differential equations iteratively:
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• The iterative solution was given by
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•  is a step size 
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SNAKES: Capture range problemsSNAKES: Capture range problems

The snake must be initialized fairly close to the final• The snake must be initialized fairly close to the final 
target  in order to get convergence.

• To make a really good initialization we need to have• To make a really good initialization we need to have 
a very good estimate of the solution before starting 
the iterative process of adapting the snake. p p g

• So we can find a good solution if we already know 
the solution. Obviously not very intersting...
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SNAKES:Capture range problemsSNAKES:Capture range problems

One good way of visualizing this is by looking at the• One good way of visualizing this is by looking at the 
negative of the gradient of the external force field.

• These are the fources that pull the snake• These are the fources that pull the snake.
• The next slide shows this for a circle.
• Notice that outside the area in the immediate vicinity• Notice that outside the area in the immediate vicinity 

of the circle, these forces are negligible.
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SNAKES: Capture range problemsSNAKES: Capture range problems
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SNAKES: Capture range problemsSNAKES: Capture range problems

This phenomenon is also the reason why you will not• This phenomenon is also the reason why you will not 
get convergence ito concavities, there are simply no 
forces to ”drag” the snake into the concavity.forces to drag  the snake into the concavity. 
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SNAKES: Capture range problemsSNAKES: Capture range problems
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SNAKES: Capture range problemsSNAKES: Capture range problems
• Xu and Prince define the vector field:• Xu and Prince define the vector field:

Tyxvyxuyx )),(),,((),( v

• It is v that will be the GVF.
• The field v is the field that minimizes the following functional:

  dxdyfvfvvuuG yxyx

222222   

• v(x,y) is  found by solving this equation.
•  is a parameter that controls the amount of smoothing.  p g
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SNAKES: Capture range problemsSNAKES: Capture range problems
• The first term will smooth the data that is far from edges the• The first term will smooth the data, that is, far from edges the 

field will be kept as smooth as possible by imposing that the 
spatial derivatives be as small as possible.

• When |f| is small the vector field will be dominated by the• When |f| is small, the vector field will be dominated by the 
partial derivatives of the vector field, yielding a smooth field. 

• Close to edges (where |f| is large) the field is forced to 
resemble the gradient of f itselfresemble the gradient of f itself.

• So v is smooth far from edges and nearly equal to the gradient 
of f close to edges.

• The term μ just defines the weight we give the different terms 
in the functional.

• The field v is computed iteratively  p y
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SNAKES:Capture range problemsSNAKES:Capture range problems

This equation has a similar solution to the original• This equation has a similar solution to the original 
differential equation.

• We treat u and v as functions of time and solve the• We treat u and v as functions of time and solve the 
equations iteratively.
– Comparable to how we iteratively computed x<i+1>,y<i+1>p y p ,y

from x<i>,y<i>

• The solution is obviously a numerical one, we use 
f f ftwo sets of iterations, one for u and one for v.

• After we have computed v(x,y), we replace Eext (the 
d it d t ) b ( )edge magnitude term) by v(x,y)

• So an interative algorithm is first used to compute 
v(x y)
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v(x,y) 



Let us try to explain this….Let us try to explain this….
You may need to see this in high resolution in matlab

Start with the gradient vector field and diffuse it over• Start with the gradient vector field and diffuse it over 
the image as we iterate
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SNAKES: Capture range problemsSNAKES: Capture range problems
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FeatSel/Robust classification: Regularized/ g
covariance matrix estimation

• Let the covariance matrix be a weighted combination of a class• Let the covariance matrix be a weighted combination of a class-
specific covariance matrix k and a common covariance matrix  
:

  nn  1   
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nn

k
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der 01 must be determined, and nk and n is the number of 
training samples for class k and overall. 

• Alternatively: 

    Ikk   1

where the parameter 01 must be determined. 
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Feature selection vs. Feature 
t f titransformation

Given a large set of N features how do we select the• Given a large set of N features, how do we select the 
best subset of m features?
– How do we select m?How do we select m?
– Finding the best combination of m features out a N possible 

is a large optimization problem.
– Full search is normally not possible.
– Suboptimal approaches are often used.

How many features are needed?– How many features are needed?

• Alternative: compute lower-dimensional projections 
of the N-dimensional spaceof the N dimensional space
– PCA
– Fisher’s linear discriminant
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– Projection pursuit and other non-linear approaches



Linear feature transformsLinear feature transforms
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Signal representation vs classificationSignal representation vs classification

• Principal components analysis (PCA)• Principal components analysis (PCA)
– - signal representation, unsupervised
– Minimize the mean square representation 

error
Linear discriminant analysis (LDA)• Linear discriminant analysis (LDA)

– -classification, supervised
– Maximize the distance between

the classes
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PCA: Correlation matrix vs. 
covariance matrixcovariance matrix

 is the covariance matrix of x• x is the covariance matrix of x

   T
x xxE  

• Rx is the correlation matrix of x

 
R if 0

   T
x xxER 

• Rx=x if x=0. 
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Principal component or
K h L t fKarhunen-Loeve transform

• Let x be a feature vector• Let x be a feature vector.
• Features are often correlated, which might lead to 

redundancies.redundancies.
• We now derive a transform which yields uncorrelated

features.
• We seek a linear transform y=ATx, and the yis should be 

uncorrelated. 
Th l t d if E[ (i) (j)T] 0 i j• The yis are uncorrelated if E[y(i)y(j)T]=0, ij.

• If we can express the information in x using uncorrelated
features we might need fewer coefficientsfeatures, we might need fewer coefficients.
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Principal component transformPrincipal component transform
• The correlation of Y is described by the correlation matrix• The correlation of Y is described by the correlation matrix

RY=E[yyT]=E[ATxxTA]=ATRxA            Rx is the correlation matrix of X
Rx is symmetric, thus all eigenvectors are orthogonal.

• We seek uncorrelated components of Y, thus Ry should be 
diagonal.diagonal. 

From linear algebra:
• Ry will be diagonal if A is formed by the orthogonal 

f T h
y

eigenvectors ai, i=0,...,N-1 of Rx:    Ry=ATRxA=, where 
is diagonal with the eigenvalues of Rx, i, on the diagonal.

• We find A by solving the equation ATRxA= (usingWe find A by solving the equation A RxA  (using 
Singular Value Decomposition (SVD)).

• A is formed by computing the eigenvectors of Rx. Each 
i t ill b l f A
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eigenvector will be a column of A.

PCA: Mean square error approximationPCA: Mean square error approximation

• x can be expressed as a combination of all N basis vectors:• x can be expressed as a combination of all N basis vectors: 

xaiyaiyx T
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• An approximation to x is found by using only m of the basis vectors:
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• The PC-transform is based on minimizing the mean square error
associted with this approximation.
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• The mean square error associated with this approximation is 
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PCAPCA
• Furthermore, we can find that
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• The mean square error is thus 
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• The error is minimized if we select the eigenvectors 
corresponding to the m largest eigenvales of the correlation 
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p g g g
matrix Rx.

• The transformed vector y is called the principal components of 
x. The transform is called the principal component transform orx. The transform is called the principal component transform or 
Karhunen-Loeve-transform.
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PCA: Geometrical interpretation of
i i l tprincipal components

• The eigenvector• The eigenvector 
corresponding to the 
largest eigenvalue is the 
di ti i di i ldirection in n-dimensional 
space with highest 
variance.

• The next principal 
component is orthogonal 
to the first and along theto the first, and along the 
direction with the second 
largest variance.

•Note that the direction with the highest variance is 

NOT related to separability between classes
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•NOT related to separability between classes. 



Fisher’s Linear DiscriminantFisher s Linear Discriminant

• Goal:
– Reduce dimension while preserving classp g

discriminatory information

• Strategy (2 classes):
– We have a set of samples x={x1, x2, …, 

xn} where n1 belong to class 1 and the
rest n2 to class 2. Obtain a scalar value
by projecting x onto a line y: y=wTxby projecting x onto a line y: y=wTx

– Challenge: find w that maximizes
the separability of the classesthe separability of the classes

– Maximize the criterion J
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Fisher: Introducing general scatterg g
matrices

In M dimensional space let us now consider matrices• In M-dimensional space, let us now consider matrices
describing the variance:
– Variance INSIDE each classVariance INSIDE each class
– Variance BETWEEN the classes (how well separated are the

classes)
– The total variance in the data set is constant and 

independent of any class labels
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Fisher: Scatter matrices M classesFisher: Scatter matrices – M classes
• Within-class scatter matrix:
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• Between-class scatter matrix:

   Tiii xxES  

•Variance within each class

Between class scatter matrix:
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Mixture or total scatter matrix:
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i
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1
0  •Distance between the classes

• Mixture or total scatter matrix: 
   T

m xxES 00  
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•Variance of feature with

•respect to the global mean

Fisher: Relation between eigenvalues and
th tt f t ithe scatter of a matrix

• The eigenvalues associated with an eigenvector tells how strong
the contribution along this direction is.

• A scalar measure of the scatter matrix M is its determinant (the
product of the eigenvalues). This gives us ONE measure of the

tt i th t iscatter in the matrix.

• If M is a covariance matrix, |M| is a measure of the l-, | |
dimensional hypervolume of the data. If the data lies in a 
subspace, |M| will be zero.

• For a covariance matrix M, trace(M) is the sum of the
eigenvalues and thus a measure of the spread or scatter in A.
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Fisher’s linear discriminantFisher s linear discriminant
• Fisher’s linear discriminant is a transform that uses the• Fisher s linear discriminant is a transform that uses the

information in the training data set to find a linear combination 
that best separates the classes. 

• It is based on the criterion J3:
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• From the feature vector x, let Sxw and Sxb be the within-class
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From the feature vector x, let Sxw and Sxb be the within class
and between-class scatter matrix.

• The scatter matrices for the transformed variable y=ATx are:
T T
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Syw=ATSxwA Syb=ATSxbA

FisherFisher

• In subspace y J becomes:• In subspace y, J3 becomes:
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• Problem: find A such that J3 is maximized. 
• Solution: set
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Computing Fishers linear discriminantComputing Fishers linear discriminant

F l M 1• For l=M-1:
– Form a matrix C such that its columns are the M-1 

eigenvectors of xbxwSS 1eigenvectors of
– Set

xbxwSS

xCy Tˆ

– This gives us the maximum J3 value.
– This means that we can reduce the dimension from m to M-

1 without loss in class separability power (but only if J is a1 without loss in class separability power (but only if J3 is a 
correct measure of class separability.)

– Alternative view: with a Bayesian model we compute the
probabilities P(i|x) for each class (i=1,...M). Once M-1 
probabilities are found, the remaining P(M|x) is given 
because the P(i|x)’s sum to one.
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( i| )

Fisher:Computation: Case 2: l<M 1Fisher:Computation: Case 2: l<M-1

Form C by selecting the eigenvectors corresponding• Form C by selecting the eigenvectors corresponding
to the l largest eigenvalues of

1

• We now have a loss of discriminating power since

xbxwSS 1

• We now have a loss of discriminating power since

xy JJ ,3ˆ,3 y ,,
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Support Vector Machines 
T li bl lTwo linear separable classes

Let x i 1 N be all the l dimensional feature vectors• Let xi, i=1,...N be all the l-dimensional feature vectors
in a training set with N samples.

• These belong to one of two classes  and • These belong to one of two classes, 1 and 2. 
• We assume that the classes are linearly separable.
• This means that a hyperplane• This means that a hyperplane 

g(x)=wTx+w0=0
correctly classifies all these training samplescorrectly classifies all these training samples. 

• w=[w1,...wl] is called a weight vector, and w0 is the
thresholdthreshold.
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SVMSVM
• If the classes are linearly separable there exist a hyperplane• If the classes are linearly separable, there exist a hyperplane 

w*Tx=0 such that:

1     0*  xxw T

• The above  also covers the situation where the hyperplane 
does not cross the origin w*Tx+w =0 since this can

2     0*  xxw T

does not cross the origin, w*Tx+w0=0, since this can 
reformulated as x’=[x,1]T, w’=[w*T,w0]T. Then w*Tx+w0=w’Tx’.

• Remember from 4300 that the decision boundary was defined 
as the surface where the discriminant function g1(x)-g2(x)=0 
(g1(x)=g2(x)). 
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SVMSVM
• There can be many such• There can be many such

hyperplanes.
• Which of these two is best, and ,

why?
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SVM:Hyperplanes and marginsSVM:Hyperplanes and margins
• A hyperplane is defined by its• A hyperplane is defined by its

direction (w) and exact position
(w0). 

• If both classes are equally• If both classes are equally
probable, the distance from 
the hyperplane to the
closest points in both classesclosest points in both classes
should be equal. This is called
the margin.

• The margin for direction 1 is• The margin for direction 1 is 
2z1, and for direction 2 it is 2z2.

• The distance from a point to a 
hyperplane ishyperplane is  

w

xg
z

)(
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SVM: Hyperplanes and marginsSVM: Hyperplanes and margins
• We can scale w and w such• We can scale w and w0 such 

that g(x) will be equal to 1 at 
the closest points in the two 
classes This is equivalent to:classes. This is equivalent to:

1. Have a margin of 
www

211


2. Require that

10

1

     ,1
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SVM: The optimization problem with marginsSVM: The optimization problem with margins

• The class indicator for pattern i y is defined as 1 if y belongs to• The class indicator for pattern i, yi, is defined as 1 if yi belongs to 
class 1 and -1 if it belongs to 2.

• The best hyperplane with margin can be found by solving the
optimization problem with respect to w: 

wwJ
1

)(minimize
2

Niwxwy

wwJ

i
T

i ,...2,1    ,1)(    subject to

2
)(    minimize

0 



• Checkpoint: do you understand this formulation?
• How is this criterion related to maximizing the margin?
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SVM: The nonseparable caseSVM: The nonseparable case
• If the two classes are nonseparable• If the two classes are nonseparable, 

a hyperplane satisfying the
conditions wTx-w0=1 cannot be 
f dfound.

• The feature vectors in the training
set are now either:

1. Vectors that fall outside the band 
and are correctly classified.

2 V t th t i id th b d
Correctly classified

2. Vectors that are inside the band 
and are correctly classified. They
satisfy 0yi(wTx+w0)<1

Erroneously classified

3. Vectors that are misclassified –
expressed as yi(wTx+w0)<0
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SVMSVM
• The three cases can be treated under a single type of contraints if• The three cases can be treated under a single type of contraints if 

we introduce slack variables i:
T wxwy  1][ 0

– The first category (outside, correct classified) have i=0
The second category (inside correct classified) have 0  1

ii wxwy  1][ 0

– The second category (inside, correct classified) have 0 i 1
– The third category (inside, misclassified) have i >1

• The optimization goal is now to keep the margin as large as 
possible and the number of points with i >0 as small as possible.
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SVM: Cost function nonseparable caseSVM: Cost function – nonseparable case
• The cost function to minimize is now

N
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• C is a parameter that controls how much misclassified training 
samples is weighted. 

• We skip the mathematics and present an alternative formulation:
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• All points between the two hyperplanes (i>0) can be shown to 
h  C
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have i=C.

SVMs: The nonlinear caseSVMs: The nonlinear case
• We have now found a classifier that is not defined in terms of the• We have now found a classifier that is not defined in terms of the

class centres or the distributions, but in terms of patterns close
to the borders between classes, the support vectors.

• It gives us a solution in terms of a hyperplane. This hyperplane 
can be expressed as a inner product between the training samples:

1N
T 
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• The training samples are l-dimensional vectors.
Wh t if th l l i l di i l

1i



• What if the classes overlap in l-dimensional space:
– Can we find a mapping to a higher dimensional space, and use the

SVM framework in this higher dimensional space?
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SVM: Learning goalsSVM: Learning goals

Understand enough of SVM classifiers to be able to• Understand enough of SVM classifiers to be able to 
use it for a classification application.
– Understand the basic linear separable problem and what theUnderstand the basic linear separable problem and what the 

meaning of the solution with the largest margin means.
– Understand how SVMs work in the non-separable case using 

t f i l ifi tia cost for misclassification. 
– Accept the kernel trick: that the original feature vectors can 

be transformed into a higher dimensional space, and that g p ,
linear  SVM is applied in this space.

– Know briefly how to extend from 2 to M classes.
K hi h t (C ) th t if d h– Know which parameters (C,) the user must specify and how 
to perform a grid search for these.

– Be able to find a SVM library and use it correctly 
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y y

SVM:The optimization problem withp p
margins
1 2

Niwxwy
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• This is a quadratic optimization task with a set of linear inequality 
contraints.
It b h th t th l ti h th f• It can be shown that the solution has the form:
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0     wherew 

• The i’s are called Lagrange multipliers.
• The i’s can be either 0 or positive. 
• We see that the solution w is a linear combination of NsN 

feature vectors associated with a i>0.

SVM 25.4.12 INF 5300 50



MRFMRF
Y = {y1,...,yN}    Image of feature vectors to classify
X = {x1,...xN}    Class labels of pixels
Task: find the optimal estimate x’ of the true labels x* for all pixels 

in the imagein the image

• Classification consists choosing the class labels x’ that maximizes 
the posterior probabilities  
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MRFMRF
• We assume that the observed random variables are 

conditionally independent:
  




M

i
iiii xXyYPP

1

)|(xX|yY

• We use a Markov field to model the spatial interaction between 
the classes (the term P(X=x)).
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MRFMRF
• Rewrite P(Yi=yi|Xi=xi) as
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• Then, )()|(
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• Maximizing this is equivalent to minimizing  

)()|( XUXYUdata 
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MRF Udata(X|C)MRF-Udata(X|C)
• Any kind of probability-based classifier can be used, for example a 

G i l ifi i h k l d di i l fGaussian classifier with a k classes, d-dimensional feature vector, 
mean k and covariance matrix k:
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MRF: Finding the labels of
ALL pixels in the image

• We still have to find an algorithm to find an estimate x’ for all• We still have to find an algorithm to find an estimate x for all 
pixels. 

• Alternative optimization algorithms are:
Si l t d li (SA)– Simulated annealing (SA) 

• Can find a global optimum
• Is very computationally heavy y p y y

– Iterated Conditional Modes (ICM)
• A computationally attractive alternative

Is only an approximation to the MAP estimate• Is only an approximation to the MAP estimate
– Maximizing the Posterior Marginals (MPM)

• We will only study the ICM algorithm, which converges only to a 
local minima and is theoretically suboptimal, but 
computationally feasible. 
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p y

MRF: ICM algorithmg

1. Initilalize xt, t=1,...N as the non-contextual classification by 
fi di h l hi h i i P(Y |X )finding the class which maximize P(Yt=yt|Xt=xt).

2. For all pixels t in the image, update      with the class that 
maximizes

tx̂
a es

)ˆ|()|( tttttttt xxXPxXyYP   X

3. Repeat 2 n times

Usually <10 iterations are sufficientUsually <10 iterations are sufficient 
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MRF: ICM in detailMRF: ICM in detail
Initilalize xt, t=1,...N as the non-contextual classification by finding the class which maximize

P(Yt=yt|Xt=xt), assign it to classified image(i,j)P(Yt yt|Xt xt), assign it to classified_image(i,j)
For iteration k=1:maxit do

For i=i:N,j=1:N (all pixels) do
minimum_energy=High_number;
For class s=1:S doFor class s 1:S do

Udata = -log (P(Yt=yt|Xt=s))
Ucontxt=0; 
nof_similar_neighbors=0;
for neighb=1:nof neighborsfor neighb 1:nof_neighbors

if (classified_image(neighb)=s) //neighbor and s of same class
++nof_similar_neighbors;

Ucontxt = -beta*nof_similar_neighbors;
energy = Udata + Ucontxt;energy  Udata  Ucontxt;
if (energy < minimum_energy)

minimum_energy = energy;
bestclass = s;

new classified image(i,j) = bestclass;_ _ g ( ,j) ;
if (new_classified_image(i,j)!=classified_image(i,j))

++nof_pixels_changed;
if nof_pixels_changed<min-limit

break;
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;

SVM: Learning goalsSVM: Learning goals

Understand the energy function combining the data• Understand the energy function combining the data 
term and the contextual term.

• Understand the Ising model• Understand the Ising model
• Understand the ICM algorithm
• Realize that other types of spatial constrains can be• Realize that other types of spatial constrains can be 

added by modifying the energy function.
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