INF 5300 - Flexible shape extraction Anne Solberg (anne@ifi.uio.no)

Next two lectures:
-Example: finding the border of the left ventricle

- Deformable templates
-Snakes
-Active shape models

Example - segmenting ultrasound images of the hearth

Motivation

- Common assumption for many segmentation methods:
- Digital images will show real world objects as well-defined regions with unique gray levels and a clear border against a uniform background.
- There are many applications where this assumption does not hold.
- Textured images.
- Noisy images (ultrasound, SAR (syntetic aperture radar)) images.
- Images with partly occluded borders
» 2D images of 3D objects

Motivation

Beware of extreme case of blending and occlusion

Motivation

- We have seen several cases where such knowledge is used:
- Thresholding: knowledge about distribution of gray levels can be used.
- Adaptive thresholding: Window size should be determined in relation to the size of the objects we want to find.
- Character recognition: size (and shape) of the typical characters useful for both segmentation and feature extraction.
- Hough transform: a precise model for the shape is used.

Motivation

1. The images we will look at now are just another example of segmentation methods using models external to the image in order to obtain the best possible segmentation.
2. A typical application where these methods are useful is segmentation of medical ultrasound images

- Much noise and blurred edges
- Much knowledge about the shape of the objects.

Introduction to deformable templates and energy functions

- Consider detection of the eye.
- An eye template consists a circle (the pupil) inside a closed contour of two parabolas.
- Parabola:

$$
y=a-\frac{a}{b^{2}} x^{2}
$$

- Find the values of the parameters $\left\{c_{p}, a, b, c, c_{c}, r\right\}$ that best fits the image, in the sense that they maximize an energy function
$\sum E_{x, y}$
$(x, y) \in$ circle.perimeter, parabola.perimeter

Introduction to deformable templates

- First, define an edge energy. The sum is over all edge points that are either on the parabolas or on the circle, and normalized by the nof. points on the contour.

- Assume also that the iris is darker than the sclera (the white area). Let $P_{x, y}$ be the gray levels.
- Consider backscatter energy for the iris:

- Since the iris is dark, a minus sign is used to create a function that has large values for pixels with small gray levels.
- For the white regions, we compute the average pixels value of pixels inside the parabola, but outside the circle:

$$
E p=\frac{\sum_{(x, y) \text { parabola-circle }} P_{x, y}}{\text { parabola.area }- \text { circle.area }}
$$

Combining the energy functions:

- Combine the three terms into:

$$
E=c_{e} E_{e}+c_{v} E_{v}+c_{p} E_{p}
$$

- c_{p}, c_{v}, and c_{e} are weights that influence the weighting of the different energy terms.
- Parameters to estimate: 8 shape parameters, 3 weights
- How do we optimize all 11 parameters?
- Suboptimal solutions can be found using genetic algorithms, but simpler models with fewer parameters are more popular.

The initial idea: Snakes

- An active contour (snake) is a set of points which aims to enclose a target feature.
- Snakes are model-based methods for localization and tracking of image structures.
- The snake is defined as an energy minimizing contour (often defined using splines).
- The energy of the snake depends on its shape and location within the image.
- Snakes are attracted to image boundaries through forces.

The initial idea: Snakes

-Goal: find a closed contour that defines the boundary of the object of interest -Location of the boundary: It should be located either at a texture edge or intensity edge.
-Shape of the boundary: It should be reasonably smooth without sharp bends

The initial idea: Snakes

- The approach is iterative:

1. The user draws an initial approximate contour.
2. A dynamic simulation is started.
3. The contour is deformed until it reaches equilibrium.

- Snakes depend on:
- Interaction with the user
- Interaction with a high-level description.
- Interaction with image data adjacent in space and time.

The initial idea: Snakes

- The energy of the snakes is affected by different types of forces:

1. Internal forces - The shape of the snake:

- Tension/elasticity forces that make the snake act like a membrane.
- Rigidity forces that make the snake act like a thin plate that resists bending.

2. Image forces - How well the shape fit texture or intensity borders.
3. Constraint forces

- User-supplied forces that come from higher-level image understanding processes.

Representation of the contour

- The contour is represented as a vector of coordinates:

$$
v(s)=(x(s), y(s))^{\top}
$$

- This is a parametric representation of the contour.
- The vector describing the position of every point on the contour makes one pass over the entire contour as s varies from its mimimum to its maximum value.
- Typically, s is normalized
$s \in[0,1]$
- We only need coordinates ($x(s), y(s)$) of the points on the contour, not a mathematical equation for the contour.

What is a parametric contour?

- Let $x(s)=\cos (2 \pi s)$ and $y(s)=\sin (2 \pi s)$
- Let $s \in[0,1]$
- Then $v(s)$ describes a circle as s varies from 0 to 1 .

- See also contour representation in INF 4300
- With snakes, we do not need the mathematical formula for the contour, we just need a start contour and rules on how the contour can change locally.

Energy functions

- Finding the contour is described as an energy minimization problem.
- The energy function consists of several terms:
- The snakes own properties (bending, stretching)
- Image energy (edge magnitude along the snake)
- Constraints making the contour smooth etc.
- The energy function is also called a functional.
- The final position of the contour will correspond to a minimum of this energy function.
- Typically, the energy function is minimized in a iterative algorithm.

The energy function

$$
E_{\text {snake }}=\int_{s=0}^{1} E_{\text {int }}(v(s))+E_{\text {image }}(v(s))+E_{\text {con }}(v(s)) d s
$$

Internal deformation energy of the snake itself.
How it can bend and stretch.

Constraints on the shape of the snake. Enchourages the contour to be smooth.
A term that relates to gray
levels in the image, e.g.
attracts the snake to points with high gradient magnitude.

- The minimum values is found by derivation:

$$
\frac{d E_{\text {snake }}}{d v}=0
$$

The internal deformation term

$$
\underbrace{E_{\text {int }}=\alpha(s)\left|\frac{d v(s)}{d s}\right|^{2}+\beta(s)\left|\frac{d^{2} v(s)}{d s^{2}}\right|^{2}}_{\text {Second derivative }}
$$

Measures how stretched the contour is.
Keyword: point spacing/elastic energy.
Measures the curvature or bending energy.

Imposes tension.
The curve should be short if possible.
Analogy: v acts like a rubber band that Keyword: point variation.
Imposes rigidity.
Changes in direction should be smooth.
Physical analogy: vacts like a thin plate. can stretch.

- α and β are parameters that control the weight of the two terms.
- Low α values: the snake can stretch much.
- Low β values: the snake can have high curvature.

The image term of E

- Attracts the snake to features in the image, like edge pixels or bright pixels.
- Originally, it consisted of a term for lines, edges (and maybe also terminations):

$$
E_{\text {image }}=w_{\text {line }} E_{\text {line }}+w_{\text {edge }} E_{\text {edge }}+w_{\text {term }} E_{\text {term }}
$$

- $\mathrm{w}_{\text {line }}, \mathrm{w}_{\text {edge }}$, and $\mathrm{w}_{\text {term }}$ are weights that control the influence of each term.
- $\mathrm{E}_{\text {line }}$ can be set to image intenstity values. If $\mathrm{w}_{\text {line }}$ is positive, it will attract the snake to dark regions, and to bright regions if $\mathrm{w}_{\text {line }}$ is negative.
- $\mathrm{E}_{\text {edge }}$ can be computed using an edge detector.
- $E_{\text {term }}$ is not commonly used.
- In general, $\mathrm{E}_{\text {image }}$ is an integral over the curve (we will later discretize the curve)

$$
E_{\text {image }}=\int_{0}^{1} P(v(s)) d s
$$

The image term

$$
E_{\text {image }}=\int_{0}^{1} P(v(s)) d s
$$

- $\mathrm{P}(\mathrm{v}(\mathrm{s}))$ denotes a scalar potential function defined on the image plane.
- We are minimizing the energy function.
- We choose $P(x, y)$ in such a way that is coincides with special features in the image, e.g. bright or dark areas, or edges.
- If $I(x, y)$ is the intensity for point (x, y), what kind of structure does this function attract the snake to?

$$
P(x, y)=-I(x, y)
$$

The image term

- A common way of defining $P(x, y)$ is:

$$
P(x, y)=-c\left|\nabla\left(G_{\sigma} * I(x, y)\right)\right|
$$

- C is a constant, $\nabla \mathrm{G}_{\sigma}$ is a gradient operator, and $\mathrm{I}(\mathrm{x}, \mathrm{y})$ the input image. Note the minus sign as the gradient is high for edges.

- If we are looking for e.g. a texture edge, the input image should be a texture feature image that results in a high gradient.

A texture example

-Test yourself: what kind of texture feature could you apply to this image before inputing to a snake algorithm?
-Hint: the desired boundary should be related to high gradient.

The energy function

- Simple snake with only two terms (no termination energy):

$$
\begin{aligned}
E_{\text {sankele }}(s) & =E_{\text {int }}\left(v_{s}\right)+E_{\text {image }}\left(v_{s}\right) \\
& =\alpha\left|\frac{d v_{s}}{d s}\right|^{2}+\beta\left|\frac{d^{2} v_{s}}{d s^{2}}\right|^{2}+\gamma E_{\text {edge }}
\end{aligned}
$$

- We need to approximate both the first derivative and the second derivative of v_{s}, and specify how $E_{\text {edge }}$ will be computed.
- The snakes is initialized from a starting position, e.g. a circle with given center and radius.
- How should the snake iterate from its initial position?

How do we implement this?

- The energy function involves finding the new location of S new coordinates (x_{s}, y_{s}), $0 \leq s \leq 1$ for one iteration.
- Which algorithm can we use to find the new coordinate locations?

1. Greedy algorithm

- Simple, suboptimal, easier to understand

2. Complete Kass algorithm

- Optimizes all points on the countour simultaneously by solving a set of differential equations.
- These two algorithms will now be presented.

The greedy algorithm for snakes

Define snake points and parameters α, β, γ

Coordinates of the initial contour

- The starting point of the snake is the initial contour. It can e.g. be no (number of points) on a circle with radius rad:

Code 6.1 Specifying an initial contour

Approximating the first derivative of v_{s}

Consider a local point son the curve.

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { Average distance } \\
\text { between points } \\
\text { on the contour }
\end{array} \\
\begin{aligned}
&\left|\frac{d v_{s}}{d s}\right|^{2}=\left|\sum_{i=0}^{S-1}\right| v_{i}-v_{i+1}\|/ S-\| v_{s}-v_{s+1}| | \mid \\
& \text { this point and the } \\
& \text { next point }
\end{aligned} \\
\\
=\left|\sum_{i=0}^{S-1} \sqrt{\left(x_{i}-x_{i+1}\right)^{2}+\left(y_{i}-y_{i+1}\right)^{2}} / S-\sqrt{\left(x_{s}-x_{s+1}\right)^{2}+\left(y_{s}-y_{s+1}\right)^{2}}\right|
\end{array}
\end{aligned}
$$

Approximating the second derivative of v_{s}

$$
\begin{aligned} & \begin{array}{l}\text { Why is this correct? } \\ \text { INF 2310 - Konvolusjon og ikke-lineære filtere (1.3.2011) } \\ \text { Hint: Check the derivation } \\ \text { of } \mid \text { the 2D Laplace operator }\end{array} \\ &\left|\frac{d^{2} v_{s}}{d s^{2}}\right|^{2}=\left|\left(v_{s+1}-2 v_{s}+v_{s-1}\right)\right|^{2} \\ &=\left(x_{s+1}-2 x_{s}+x_{s-1}\right)^{2}+\left(y_{s+1}-2 y_{s}-y_{s-1}\right)^{2}\end{aligned}
$$

Computing $\mathrm{E}_{\text {edge }}$

- $\mathrm{E}_{\text {edge }}$ can be implemented as the magnitude of the Sobel operator at point (x, y).
- The energy should be minimized, so we invert the edge image (maximizing a function f is equvalent to minimizing $-f$). (Alternatively we use a negative value of α)
- Normalize all energy terms so that they have an output in the inteval [0,1].

The full greedy algorithm

Comments on the greedy algorithm

- A threshold on the number of changes done in a single iteration can be used to avoid oscillations between two contours with very similar energy.
- If $\alpha=0$, contour points can have very different spacing.
- If $\beta=0$, points with high curvature can be allowed (this can be allowed locally if β varies with s).
- If $\gamma=0$, we ignore the image and the position of the contour can be far from the real edge in the image.

From the greedy algorithm to a full snake

- The greedy algorithm only finds the minimum energy for one point (x, y) on the snake at the time, and only points that are neighbors of current snake points are checked at a given iteration.
- A full algorithm should minimize the energy for all snake points $v_{s}, s=1, S$.

The complete snake - derivation

- Assume that we seek an iterative solution.
- Assume that we have one solution

$$
\hat{v}(s)=(\hat{x}(s), \hat{y}(s))
$$

- If this solution is perturbated slightly by $\varepsilon \delta \mathrm{v}(\mathrm{s})$, the solution that has minimum energy must satisfy:

$$
\frac{d E_{\text {snake }}(\hat{v}(s)+\varepsilon \delta v(s))}{d \varepsilon}=0 \quad \begin{aligned}
& \text { The new solution should be a minimum, } \\
& \text { so the derivative must be } 0 .
\end{aligned}
$$

- The slight spatial perturbation is defined as $\delta v(s)=\left(\delta_{x}(s), \delta_{y}(s)\right)$.
- The perturbed snake solution is:

$$
\hat{v}(s)+\varepsilon \delta v(s)=\left(\hat{x}(s)+\varepsilon \delta_{x}(s), \hat{y}(s)+\varepsilon \delta_{y}(s)\right)
$$

- The snake equation is:

$$
E_{\text {snoke }}=\int_{s=0}^{1} E_{\text {int }}(v(s))+E_{\text {edge }}(v(s)) d s
$$

- With a slight perturbation:

- Insert the values derived for $\mathrm{E}_{\text {int }}$ and $\mathrm{E}_{\text {edge }}$:
$E_{\text {solece }}(\hat{v}(s)+\varepsilon \delta \delta(s))=\int_{s-0}^{1}\left\{\alpha(s)\left|\frac{d(\hat{v}(s)+\varepsilon \delta v(s))}{d s}\right|^{2}+\beta(s)\left|\frac{d^{2}(\hat{v}(s)+\varepsilon \delta v(s))}{d s^{2}}\right|^{2}+E_{\text {cags }}(\hat{\hat{v}}(s)+\varepsilon \delta \delta(s))\right\} d s$
- Separate into $x(s)$ and $y(s)$:

$$
E_{\text {snake } e}(\hat{v}(s)+\varepsilon \delta \delta(s))=\int_{s=0}^{1}\left\{\begin{array}{c}
\alpha(s)\left\{\begin{array}{c}
\left(\frac{d \hat{x}(s)}{d s}\right)^{2}+2 \varepsilon \frac{d \hat{x}(s)}{d s} \frac{d \delta_{x}(s)}{d s}+\left(\varepsilon \frac{d \delta_{x}(s)}{d s}\right)^{2} \\
+\left(\frac{d \hat{y}(s)}{d s}\right)^{2}+2 \varepsilon \frac{d \hat{y}(s)}{d s} \frac{d \delta_{y}(s)}{d s}+\left(\varepsilon \frac{d \delta_{y}(s)}{d s}\right)^{2}
\end{array}\right\} \\
+\beta(s)\left\{\begin{array}{l}
\left(\frac{d^{2} \hat{x}(s)}{d s^{2}}\right)^{2}+2 \varepsilon \frac{d^{2} \hat{x}(s)}{d s^{2}} \frac{d^{2} \delta_{x}(s)}{d s^{2}}+\left(\varepsilon \frac{d^{2} \delta_{x}(s)}{d s^{2}}\right)^{2} \\
+\left(\frac{d^{2} \hat{y}(s)}{d s^{2}}\right)^{2}+2 \varepsilon \frac{d^{2} \hat{y}(s)}{d s^{2}} \frac{d^{2} \delta_{y}(s)}{d s^{2}}+\left(\varepsilon \frac{d^{2} \delta_{y}(s)}{d s^{2}}\right)^{2} \\
+\operatorname{Eedge}(\hat{v}(s)+\varepsilon \delta v(s))
\end{array}\right\} d s
\end{array}\right\}
$$

- Use Taylor series expansion on $E_{\text {edge }}$:

$$
\begin{aligned}
& E_{\text {edge }}(\hat{v}(s)+\varepsilon \delta v(s))=E_{\text {edge }}\left(\hat{x}(s)+\varepsilon \delta_{x}(s), \hat{y}(s)+\varepsilon \delta_{y}(s)\right) \\
& =E_{\text {elge }}(\hat{\chi}(s), \hat{y}(s))+\left.\varepsilon \delta_{x}(s) \frac{\partial E_{\text {edje }}}{\partial x}\right|_{\chi, \hat{y}}+\left.\varepsilon \delta_{y}(s) \frac{\partial E_{\text {eide }}}{\partial y}\right|_{x, \hat{y}}+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

- $E_{\text {edge }}$ must be twice differentiable, which holds for edge information.

Taylor expansion of $f(x+h)=f(x)+h f^{\prime}(x)+h / 2 f^{\prime \prime}(x)+\ldots$
If ε is small, ε^{2} can be neglected.

- Since ε is small, ignore all second order terms in ε and reformulate $\mathrm{E}_{\text {snake }}$:

$$
\begin{aligned}
& E_{\text {snokece }}(\hat{v}(s)+\varepsilon \delta v(s))=E_{\text {snokec }}(\hat{v}(s)) \\
& +2 \varepsilon \int_{s=0}^{1} \alpha(s) \frac{d \hat{x}(s)}{d s} \frac{d \delta_{x}(s)}{d s}+\beta(s) \frac{d^{2} \hat{x}(s)}{d s^{2}} \frac{d^{2} \delta_{x}(s)}{d s^{2}}+\left.\frac{\delta_{x}(s)}{2} \frac{\partial E_{\text {edge }}}{\partial x}\right|_{\hat{x, y}} d s \\
& +2 \varepsilon \int_{s=0}^{1} \alpha(s) \frac{d \hat{y}(s)}{d s} \frac{d \delta_{y}(s)}{d s}+\beta(s) \frac{d^{2} \hat{y}(s)}{d s^{2}} \frac{d^{2} \delta_{y}(s)}{d s^{2}}+\left.\frac{\delta_{y}(s)}{2} \frac{\partial E_{\text {edge }}}{\partial y}\right|_{\hat{x}, \hat{y}} d s
\end{aligned}
$$

- Since $\hat{v}(s)$ is a valid solution, it must be a local minimum and the two intergral terms must be zero:

$$
\begin{aligned}
& \int_{s=0}^{1} \alpha(s) \frac{d \hat{x}(s)}{d s} \frac{d \delta_{x}(s)}{d s}+\beta(s) \frac{d^{2} \hat{x}(s)}{d s^{2}} \frac{d^{2} \delta_{x}(s)}{d s^{2}}+\left.\frac{\delta_{x}(s)}{2} \frac{\partial E_{\text {edge }}}{\partial x}\right|_{x, y} d s=0 \\
& \int_{s=0}^{1} \alpha(s) \frac{d \hat{y}(s)}{d s} \frac{d \delta_{y}(s)}{d s}+\beta(s) \frac{d^{2} \hat{y}(s)}{d s^{2}} \frac{d^{2} \delta_{y}(s)}{d s^{2}}+\left.\frac{\delta_{y}(s)}{2} \frac{\partial E_{e \text { elge }}}{\partial y}\right|_{x, y} d s=0
\end{aligned}
$$

To solve this integral, use the rule for partial integration
$\int f(x) G(x) d x=F(x) G(x)-\int F(x) g(x) d x$
with
$G(x)=\alpha(s) \frac{d \hat{x}(s)}{d s}$ and $f(x)=\frac{d \partial_{x}(s)}{d s}$

- By integration we get:
$\left[\alpha(s) \frac{d \hat{x}(s)}{d s} \delta_{x}(s)\right]_{s=0}^{1}-\int_{s=0}^{1} \frac{d}{d s}\left\{\alpha(s) \frac{d \hat{x}(s)}{d s}\right\} \delta_{\chi}(s) d s$

$$
\begin{aligned}
& {\left[\beta(s) \frac{d^{2} \hat{x}(s)}{d s^{2}} \frac{d \delta_{x}(s)}{d s}\right]_{s=0}^{1}-\left[\frac{d}{d s}\left\{\beta(s) \frac{d^{2} \hat{x}(s)}{d s^{2}}\right\} \delta_{x}(s)\right]_{s=0}^{1}} \\
& +\int_{s=0}^{1} \frac{d^{2}}{d s^{2}}\left\{\beta(s) \frac{d^{2} \hat{x}(s)}{d s^{2}}\right\} \delta_{x}(s) d s+\left.\frac{1}{2} \int_{s=0}^{1} \frac{\partial E_{\text {edge }}}{\partial x}\right|_{x, \hat{y}} \delta_{x}(s) d s=0
\end{aligned}
$$

- As s goes from 0 to 1 , we tranverse one full contour and end up at precisely the same point. Thus $\delta_{x}(1)-\delta_{x}(0)=0$ and $\delta_{y}(1)-\delta_{y}(0)$
- Because of this, the first, third and fourth term is zero.
- So we get:

$$
\int_{s=0}^{1}\left\{-\frac{d}{d s}\left\{\alpha(s) \frac{d \hat{x}(s)}{d s}\right\}+\frac{d^{2}}{d s^{2}}\left\{\beta(s) \frac{d^{2} \hat{x}(s)}{d s^{2}}\right\}+\left.\frac{1}{2} \int_{s=0}^{1} \frac{\partial E_{\text {edge }}}{\partial x}\right|_{\hat{\chi}, \hat{y}}\right\} \delta_{x}(s) d s=0
$$

- Because this must be true for all $\delta_{x}(s)$ the term within the outer $\}$ must be zero:

$$
-\frac{d}{d s}\left\{\alpha(s) \frac{d \hat{x}(s)}{d s}\right\}+\frac{d^{2}}{d s^{2}}\left\{\beta(s) \frac{d^{2} \hat{x}(s)}{d s^{2}}\right\}+\left.\frac{1}{2} \int_{s=0}^{1} \frac{\partial E_{\text {edge }}}{\partial x}\right|_{\hat{x}, \hat{y}}=0
$$

- A similar derviation can be done for $\mathrm{y}(\mathrm{s})$. Thus, we have a pair of differential equations.
- A complete snake must solve these two equations.

Solving the differential equations

- So, we have two differential equations.
- We approximate the first order derivatives: $\mathrm{dx}(\mathrm{s}) / \mathrm{ds} \cong \mathrm{x}_{\mathrm{s}+1^{-}} \mathrm{x}_{\mathrm{s}}$
- And the second order derivatives: $d^{2} x(s) / d s^{2} \cong x_{s+1}-2 x_{s}+x_{s-1}$
- We discretize the contour into $S(s=1, . ., S)$ points with spacing h:

$$
\begin{aligned}
& -\frac{1}{h}\left\{\alpha_{s+1} \frac{x_{s+1}-x_{s}}{h}-\alpha_{s} \frac{x_{s}-x_{s-1}}{h}\right\} \\
& +\frac{1}{h^{2}}\left\{\beta_{s+1} \frac{x_{s+2}-2 x_{s+1}+x_{s}}{h^{2}}-2 \beta_{s} \frac{x_{s+1}-2 x_{s}+x_{s-1}}{h^{2}}+\beta_{s-1} \frac{x_{s}-2 x_{s-1}+x_{s-2}}{h^{2}}\right\} \\
& +\left.\frac{1}{2} \frac{\partial E_{\text {edge }}}{d x}\right|_{x_{s}, y_{s}}
\end{aligned}
$$

- We can write this on the form

$$
\begin{aligned}
& f_{s}=a_{s} x_{s-2}+b_{s} x_{s-1}+c_{s} x_{s}+d_{s} x_{s+1}+e_{s} x_{s+2} \\
& \text { where } \\
& f_{s}=-\left.\frac{1}{2} \frac{\partial E_{e d g e}}{d x}\right|_{x_{s}, y_{s}} \quad a_{s}=\frac{\beta_{s-1}}{h^{4}} \quad b_{s}=-\frac{2\left(\beta_{s}+\beta_{s-1}\right)}{h^{4}}-\frac{\alpha_{s}}{h^{2}} \\
& c_{s}=\frac{\beta_{s+1}+4 \beta_{s}+\beta_{s-1}}{h^{4}}+\frac{\alpha_{s+1}+\alpha_{s}}{h^{2}} \quad d_{s}=-\frac{2\left(\beta_{s+1}+\beta_{s}\right)}{h^{4}}-\frac{\alpha_{s+1}}{h^{2}} \quad e_{s}=\frac{\beta_{s+1}}{h_{4}}
\end{aligned}
$$

- This is also a matrix equation: $A x=f_{x}(x, y)$ where $f_{x}(x, y)$ is the first order differential edge magnitude along the x-axis and
$A=\left[\begin{array}{ccccccc}c_{1} & d_{1} & e_{1} & 0 & . . & a_{1} & b_{1} \\ b_{2} & c_{2} & d_{2} & e_{2} & 0 & . . & a_{2} \\ a_{3} & b_{3} & c_{3} & d_{3} & e_{3} & 0 & \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ & & & & & & \\ e_{s-1} & 0 & . . & a_{s-1} & b_{s-1} & c_{s-1} & d_{s-1} \\ d_{s} & e_{s} & 0 & . . & a_{s} & b_{s} & c_{s}\end{array}\right]$
- The equivalent holds for $y(s)$. So we have two equations

$$
\begin{aligned}
& A x=f_{x}(x, y) \\
& A y=f_{y}(x, y)
\end{aligned}
$$

- These means that the snake energy should be balanced by the edge energy.
- We need an iterative approach to get a solution that is globally optimal (one single iteration by computing A^{-1} gives a local optimal solution).
- An iterative solution must have snake points that depend on time, a snake that can move.
- Let $x^{<i>}, y^{<i>}$ denote the solution at time i.

Manipulating the equation

- We have:

$$
\begin{aligned}
& A x^{\langle i\rangle}-f x\left(x^{\langle i\rangle}, y^{\langle i\rangle}\right)=0 \\
& A y^{\langle i\rangle}-f y\left(x^{\langle i\rangle}, y^{\langle i\rangle}\right)=0
\end{aligned}
$$

- To solve these equations, set them equal to a small step size λ times the negative time derivatives of the coordinates (also assume for simplicity that f_{x} and f_{y} are constant during one time step):

$$
\begin{aligned}
& A x^{\langle i+1\rangle}-f x\left(x^{\langle i\rangle}, y^{\langle i\rangle}\right)=-\lambda\left(x^{\langle i+1\rangle}-x^{\langle i\rangle}\right) \\
& A y^{\langle i+1\rangle}-f y\left(x^{\langle i\rangle}, y^{\langle i\rangle}\right)=-\lambda\left(y^{\langle i+1\rangle}-y^{\langle i\rangle}\right)
\end{aligned}
$$

- If the solution is at an equilibrium, the right hand side will equal 0 and the original equation be fullfilled.
- Rewrite this as:

$$
\begin{aligned}
& (A+\lambda I) x^{\langle i+1\rangle}=f_{x}\left(x^{\langle i\rangle}, y^{\langle i\rangle}\right)+\lambda x^{\langle i\rangle} \\
& (A+\lambda I) y^{\langle i+1\rangle}=f_{y}\left(x^{\langle i\rangle}, y^{\langle i\rangle}\right)+\lambda y^{\langle i\rangle}
\end{aligned}
$$

$$
\begin{gathered}
(A+\lambda I) x^{\langle i+1\rangle}=f_{x}\left(x^{\langle i\rangle}, y^{\langle i\rangle}\right)+\lambda x^{\langle i\rangle} \\
(A+\lambda I) y^{\langle i+1}=f_{y}\left(x^{\langle \rangle}, y^{\langle i\rangle}\right)+\lambda y^{\langle i\rangle} \\
\mathbb{1} \\
x^{\langle i+1\rangle}=(A+\lambda I)^{-1}\left(\lambda x^{\langle i\rangle}+f_{x}\left(x^{\langle i\rangle}, y^{\langle i\rangle}\right)\right) \\
y^{\langle i+1\rangle}=(A+\lambda I)^{-1}\left(\lambda y^{\langle i\rangle}+f_{y}\left(x^{\langle \rangle}, y^{\langle i\rangle}\right)\right)
\end{gathered}
$$

- The matrix $A+\lambda I$ is pentadiagonal banded and can be inverted fast using LU-decomposition.
- A whole set of contour points is found for each solution.

