INF 5300 — Flexible shape extraction
Anne Solberg (anne@ifi.uio.no)

Next two lectures:

*Example: finding the border of the left ventricle
« Deformable templates

*Snakes

«Active shape models

Snakes 15.02.12 INF 5300 1

Example — segmenting ultrasound images
of the hearth

i Find the border of the left ventricle
Swerrer Holm, 109, 19580401 V i . .
13110/2004 13-13:02 o8 ¢ i « 3D object with a closed border
e 2D views have partly
discontinuous border
« Noisy image
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Can previous segmentation methods
work?

Swerrer Holm, 1 ] e Thresholding?

1311042004 13

e Hit and miss?
e Region growing?
e Edge-based segmentation?
e Watershed?
e Line detection?
e Hough transform?
— Ellipse?
— Can be extended to general
shapes if the precise

mathematical description of the
shape is known.
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Motivation

» Common assumption for many segmentation
methods:
— Digital images will show real world objects as well-defined
regions with unique gray levels and a clear border against a
uniform background.

* There are many applications where this assumption does not
hold.

— Textured images.
— Noisy images (ultrasound, SAR (syntetic aperture radar))
images.
— Images with partly occluded borders
» 2D images of 3D objects
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Motivation

Beware of extreme case of blending and occlusion
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Motivation

* We have seen several cases where such knowledge is
used:

— Thresholding: knowledge about distribution of gray levels
can be used.

— Adaptive thresholding: Window size should be determined in
relation to the size of the objects we want to find.

— Character recognition: size (and shape) of the typical
characters useful for both segmentation and feature
extraction.

— Hough transform: a precise model for the shape is used.
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Motivation

1.

2.

The images we will look at now are just another
example of segmentation methods using models
external to the image in order to obtain the best
possible segmentation.

A typical application where these methods are useful
is segmentation of medical ultrasound images

e Much noise and blurred edges

e Much knowledge about the shape of the objects.

INF 5300 7

Introduction to deformable templates
and energy functions

Consider detection of the eye.

An eye template consists a circle (the

pupil) inside a closed contour of two f
parabolas.

Parabola: \

a o
y=a-3X - B
b (al Eye templalz

Find the values of the parameters
{c,» a, b, ¢, ¢, r} that best fits the
image, in the sense that they
maximize an energy function

2E,,

(x,y)ecircle. perimeter, parabola. perimeter
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Introduction to deformable templates

First, define an edge energy. The sum is over all edge points that are either on
the parabolas or on the circle, and normalized by the nof. points on the contour.
2E, 2 E.
Ee — (x,y)ecircle. perimeter + (x,y)eparabola. perimeter

circle.perimeter  parabola. perimeter
Assume also that the iris is darker than the sclera (the white area). Let P, , be
the gray levels.
Consider backscatter energy for the iris:
2Py
(x,y)ecircle

circle.area

Ev=-

Since the iris is dark, a minus sign is used to create a function that has large
values for pixels with small gray levels.

For the white regions, we compute the average pixels value of pixels inside the
parabola, but outside the circle:

2Py
(x,y)eparabola—circle

Ep = -
parabola.area —circle.area
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Combining the energy functions:

Combine the three terms into:
E=cE. +cE, +c,E,
Cps Cy» @nd c, are weights that influence the weighting of the
different energy terms.
Parameters to estimate: 8 shape parameters, 3 weights
— How do we optimize all 11 parameters?

— Suboptimal solutions can be found using genetic algorithms, but
simpler models with fewer parameters are more popular.
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The initial idea: Snakes

e An active contour (snake) is a set of points which
aims to enclose a target feature.

* Snakes are model-based methods for localization and

tracking of image structures.

e The snake is defined as an energy minimizing
contour (often defined using splines).

e The energy of the snake depends on its shape and
location within the image.

* Snakes are attracted to image boundaries through
forces.
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The initial idea: Snakes

*Goal: find a closed contour
that defines the boundary
of the object of interest

eLocation of the boundary:
It should be located either
at a texture edge or
intensity edge.

*Shape of the boundary: It
should be reasonably
smooth without sharp
bends

INF 5300
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The initial idea: Snakes

e The approach is iterative:
1. The user draws an initial approximate contour.
2. A dynamic simulation is started.
3. The contour is deformed until it reaches equilibrium.

e Snakes depend on:
— Interaction with the user
— Interaction with a high-level description.
— Interaction with image data adjacent in space and time.
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The initial idea: Snakes

» The energy of the snakes is affected by different
types of forces:
1. Internal forces — The shape of the snake:
e Tension/elasticity forces that make the snake act like a
membrane.
« Rigidity forces that make the snake act like a thin plate that
resists bending.
2. Image forces — How well the shape fit texture or intensity
borders.
3. Constraint forces

e User-supplied forces that come from higher-level image
understanding processes.
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Representation of the contour

The contour is represented as a vector of coordinates:

v(s) = (X(s), y(s))T
This is a parametric representation of the contour.
The vector describing the position of every point on the
contour makes one pass over the entire contour as s
varies from its mimimum to its maximum value.
Typically, sis normalized

se[0,1]

We only need coordinates (x(s),y(s)) of the
points on the contour, not a mathematical
equation for the contour.
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What is a parametric contour?

Let x(s)=cos(2ns) and y(s)=sin(2ns)
Let s€[0,1]
Then v(s) describes a circle as s varies from 0 to 1.

See also contour representation in INF 4300

With snakes, we do not need the mathematical formula for the
contour, we just need a start contour and rules on how the
contour can change locally.
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Energy functions

« Finding the contour is described as an energy
minimization problem.

» The energy function consists of several terms:
— The snakes own properties (bending, stretching)
— Image energy (edge magnitude along the snake)
— Constraints making the contour smooth etc.

» The energy function is also called a functional.

e The final position of the contour will correspond to a
minimum of this energy function.

» Typically, the energy function is minimized in a
iterative algorithm.
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The energy function

Esnake = LI:O Eint (V(S)) + Eimage (V(S)) + Econ (V(S))dS

AN

Constraints on the shape of the
snake. Enchourages the contour
to be smooth.

Internal deformation energy
of the snake itself.

How it can bend and stretch.
A term that relates to gray

levels in the image, e.g.
attracts the snake to points
with high gradient magnitude.

e The minimum values is found by derivation:
dE

snake _ 0

dv
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The internal deformation term

2

2 2
B = () s ps) L)
ds ds
/ \
First derivative Second derivative

Measures how stretched the contour is. Measures the curvature or bending energy.
Keyword: point spacing/elastic energy. Keyword: point variation.
Imposes tension. Imposes rigidity.
The curve should be short if possible. Changes in direction should be smooth.
Analogy: v acts like a rubber band that Physical analogy: v acts like a thin plate.

can stretch.
e o and B are parameters that control the weight of the two terms.

e Low a values: the snake can stretch much.
e Low B values: the snake can have high curvature.
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The image term of E

» Attracts the snake to features in the image, like edge pixels or bright
pixels.

e Originally, it consisted of a term for lines, edges (and maybe also

terminations): E =W Epe + Woge B + Wiern E

image line edge —edge term —term

* Wines Wegge: aNd Wy, are weights that control the influence of each term.

* E,. can be set to image intenstity values. If wy, is positive, it will attract
the snake to dark regions, and to bright regions if wy, is negative.

*  Eeqge CaN be computed using an edge detector.
®  Em is NOt commonly used.

= Ingeneral, B4 is an integral over the curve (we will later discretize the
curve)

Eimage = j P(V(S))dS
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The image term

Eimage = j‘ P(V(S))dS

e P(v(s)) denotes a scalar potential function defined on the image
plane.

* We are minimizing the energy function.

e We choose P(x,y) in such a way that is coincides with special
features in the image, e.g. bright or dark areas, or edges.

« If I(x,y) is the intensity for point (x,y), what kind of structure does
this function attract the snake to?

P(X, Y): =1 (X, Y)
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The image term

e A common way of defining P(x,y) is:

P(x,¥)=~c[V(G, *1(x, )

e cis aconstant, VG, is a gradient operator, and I(x,y) the input
image. Note the minus sign as the gradient is high for edges.

< If we are looking for e.g. a texture edge, the input image should
be a texture feature image that results in a high gradient.
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A texture example

eTest yourself: what
kind of texture feature
could you apply to this
image before inputing
to a snake algorithm?
eHint: the desired
boundary should be
related to high
gradient.

Snakes INF 5300

23

The energy function

» Simple snake with only two terms (no termination
energy):
Esnake(s) = Eint (Vs) + Eimage (Vs)

dv, d?v, ’
as| " ast| TR

2
=

+p

* We need to approximate both the first derivative and
the second derivative of v, and specify how E.y,, will be
computed.

e The snakes is initialized from a starting position, e.g. a
circle with given center and radius.

* How should the snake iterate from its initial position?

INF 5300
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How do we implement this?

The energy function involves finding the new
location of S new coordinates (X,,Y.), 0<s<1 for one
iteration.

Which algorithm can we use to find the new
coordinate locations?
1. Greedy algorithm
— Simple, suboptimal, easier to understand
2. Complete Kass algorithm

— Optimizes all points on the countour simultaneously by solving
a set of differential equations.

— These two algorithms will now be presented.

INF 5300 25

The greedy algorithm for snakes

Define snake points and
parameters o,f, v

Start with first snake point

Initialize minimum energy
and coordinates

I

Determine coordinates of neighbourhood
point with lowest energy

l

Set new snake point coordinates
to new minimum

Finish iteration

INF 5300 26
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Coordinates of the initial contour

The starting point of the snake is the initial contour. It can e.g.
be no (number of points) on a circle with radius rad:

| points(rad,no,xc,yc) :=| for se0..no-1

age0.5
Bee=0.5

Tl

point, «| a,

point

Kgk .\:c-thc\r[rad-.’:(‘.s [ '

52K
¥s=yorfloor d-si
¥seyc+iloo (ra n( o

Code 6.1  Specifying an initial contour

INF 5300 27
Approximating the first derivative of v,
Consider a local point s on the curve.
Average distance Distance between
between points this point and the
on the contour next point
dv, s-1
5| = ;Hvi ~Viall/8 =[ve = vea
s-1 |
=20 =) + (= ¥i) 1S =06 = %) + (Y, = Vi)’
i=0
INF 5300 28
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Approximating the second derivative of v,

Why is this correct?

INF 2310 — Konvolusjon og ikke-linezere filtere (1.3.2011)
Hint: Check the derivation

0f|the 2D Laplace operator

2 }

= |(Vs+1 - 2Vs + Vs—1)|2

d?v,
ds?

= (Xs+1 - 2Xs + Xs—1)2 + (ys+1 - 2ys - ys—l)2

INF 5300 29

Computing E qc

* Egqqe Can be implemented as the magnitude of the
Sobel operator at point (x,y).

» The energy should be minimized, so we invert the
edge image (maximizing a function f is equvalent to
minimizing —f). (Alternatively we use a negative value
of o)

e Normalize all energy terms so that they have an
output in the inteval [0,1].

INF 5300 30
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The full greedy algorithm

Emine (con,);.Econt (xmin,ymin, s, con)
EmineEmin+ (con,) ;- Eeur (xmin, ymin, s, con)

grdy (edg,con) := |for slel..rows

Emin«Emin+{ n, X

xxé—x- (con

¥y+y- (con,

yminey

xmin
ymin

con, &| (eon,);

{cong l;

| leongl,

con
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Comments on the greedy algorithm

e A threshold on the number of changes done in a single iteration
can be used to avoid oscillations between two contours with
very similar energy.

< If a=0, contour points can have very different spacing.

e If p=0, points with high curvature can be allowed (this can be
allowed locally if B varies with s).

e If y=0, we ignore the image and the position of the contour can
be far from the real edge in the image.
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From the greedy algorithm to a full snake

e The greedy algorithm only finds the minimum energy
for one point (x,y) on the snake at the time, and only
points that are neighbors of current snake points are
checked at a given iteration.

e A full algorithm should minimize the energy for all
snake points v,, s=1,S.
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The complete snake - derivation

Assume that we seek an iterative solution.
Assume that we have one solution

v(s) = (X(s), ()

< If this solution is perturbated slightly by &8v(s), the solution that
has minimum energy must satisfy:

dEsnake(Q(S) + 85\/(5)) 0 The new sFJIut.|on should be a minimum,
de = so the derivative must be 0.

= The slight spatial perturbation is defined as dv(s)=(,(s), 5,(s))-
e The perturbed snake solution is:

V() + ed(s) = (X(s) + &0, (s), Y(s) + £9,(s))

INF 5300 34
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e The snake equation is: )
Esnake = .[s:o Eim (V(S)) + Eedge (V(S))ds

e With a slight perturbation:

. Insert the perturbated
E e (9(8) + 80($)) = || B (0(5) + 600(5)) + E¢ip (9(5) + £64($))ds | solution

= Insert the values derived for E;;; and Eqqg!

|d (0(s) + sav(s))[*
| ds |

|d2(i(s)
+ﬁ(8)‘ 5

E e (0(5) + () - Liu{a@) :f‘”(s”} +E 09+ ea/(s))}ds
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e Separate into x(s) and y(s):

[MJZ + 2, 0R(5) 45,(5) +(£ déx(s)jz
ds ds ds ds
YN e dis) 4o d4s,(s) ¥
+(Mj 12,0 y<s)+(5 y(s)J
ds ds ds ds
Eqnue (U() + e0(8)) = [ [ﬁ(s)j 12,875 4%5,(6) +[8 dzb‘x(s)jz ds
ds? ds®  ds? ds?
+p(s) 2oy N2 2008 d%5 4% 2
+[d y(S)J 4 2,890) y<s>+[g y<5>]
ds? ds?  ds? ds?
+ Eedge(V(s) + edv(s))
INF 5300 36
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Use Taylor series expansion on Eqqg.:
Eegge (V(8) + £0U(8)) = Eegqe (X(5) + £5,(5), () + 6, (5))

CEL (R(9), §(9) + s@(s)% +ecsy(s)% +0(e2)

%,y %,y

Eeage Must be twice differentiable, which holds for edge information.

Taylor expansion of f(x+h)=f(x)+hf'(x)+h/2f"(x)+....
If ¢ is small, €2 can be neglected.
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Since ¢ is small, ignore all second order terms in ¢ and reformulate
Esnake:

Exnae (V(8) + £0V(8)) = E e (V(5))
dx(s) dd,(s) d°%(s) d°5,(s) , I, () OEesge

ta(s)—— s ds
+25J' () ds ds A ds>  ds’ 2 X \Xy
s=0
1 a(s) dg\/(s) dé‘y(s) +ﬁ(s) dzy(s) dzé‘y(s) + 5y(s) aEedge dS
+2¢ | ds ds ds’  ds? 2 oy |,
=0
INF 5300 38
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Since V(s) is a valid solution, it must be a local minimum and the
two intergral terms must be zero:

¢ dx(s) d§ (s) d? x(s) d?s, (s) 5,(S) OBeqge N

sLa(s) +B(s) 2 > ‘mds—o

ja(s) d%(s) d5y(5)+ﬁ( X ygs) d°5,(5) , 6,(5) | 4o _¢
s ds ds?  ds? 2 ks

To solve this integral, use the rule for partial integration

j £ (X)G(x)dx = F(x)G(x)—IF(x)g(x)dx
with
dx(s) do,(s)

G(x)=a(s)—— s

and f(x)=

INF 5300 39

By integration we get:

s:O

[ﬁ(S) X‘S’”‘S)} —[: pEE fx(s)}
o S ds

s=0
1 1

d X(S) E aEedge
j {ﬁ(S) }5x(s)ds+2 | ==

S:O s=0

6,(s)ds=0

As s goes from 0O to 1, we tranverse one full contour and end up at
precisely the same point. Thus 6,(1) —,(0) =0and 6, (1) -6, (0)
Because of this, the first, third and fourth term is zero.
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e So we get:

s=0

3 dR(s) d? x(s) t Oy
f{ Gl oG }zioaxgw

}ﬁx(s)ds =0

* Because this must be true for all 3,(s) the term within the outer {}
must be zero:

=0

O PO T e
{() }d {ﬁ() } 21

i

e A similar derviation can be done for y(s). Thus, we have a pair of
differential equations.

e A complete snake must solve these two equations.
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Solving the differential equations

e So, we have two differential equations.
* We approximate the first order derivatives: dx(s)/ds=X,,-X,
e And the second order derivatives:
d?x(s)/ds? =X, 1-2X+X, 1
* We discretize the contour into S (s=1,..,S) points with spacing

h:
_1 a,, X“l_xs—as Xs = Xsq
h h h
1 2~ 2%y Xg1 = 2Xg + X X, —2X,, + X
T{ﬂm R gp St S g RS }
1%
2 dx oy
INF 5300 42

21



* We can write this on the form

fo=aX , +bX +CX +dX, s +eX,.,,

where

1| B, BB
ST » s = he 3 he he
c. :ﬁs+1+4ﬂs+ﬂs—1+as+1+as d :_Z(ﬁm*ﬁs)_@ e :&
's 4 2 s 4 2 s
h h h h h,

e This is also a matrix equation: Ax=f,(X,y) where f,(X,y) is the
first order differential edge magnitude along the x-axis and
¢ d e 0 . a b
b, ¢, d, e 0 .
a, b, ¢, d; e O

A=
esl 0 - asl bsl Csl dsl
|d, e 0 . a b ¢ |
INF 5300
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e The equivalent holds for y(s). So we have two equations
Ax=f (X,y)
Ay=ty(x,y)

e These means that the snake energy should be balanced by the

edge energy.

* We need an iterative approach to get a solution that is globally

optimal (one single iteration by computing A1 gives a local
optimal solution).

« An iterative solution must have snake points that depend on
time, a snake that can move.

e Let x<™,y=> denote the solution at time i.

INF 5300
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Manipulating the equation

e We have:
A — f(x,y ) =0
Ay<i> _ fy(x<‘>, y<i>) -0
e To solve these equations, set them equal to a small step size A
times the negative time derivatives of the coordinates (also
assume for simplicity that f, and f, are constant during one
time step):
AxS fX(X<i>’ y<i>) _ 7l(x<\+l> _ X<i>)
Ay y Y = Ay y )

e If the solution is at an equilibrium, the right hand side will
equal 0 and the original equation be fullfilled.

* Rewrite this as:
(A+ﬂ| )X<|+1> — fx(x<l>’ y<l>)+ﬂX<l>

(A‘Fﬂl )y<i+l> — fy(X<i>, y<i>)+ﬂy<i>
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(A+l| )X<|+1> — fx(x<l>, y<|>)+ix<i>
(A+l| )y<i+1> — fy(X<|>, y<|>)+ﬂy<i>
g
x> =(A+ﬂ| )—l(ix<i> i fX(X<i>, y<i>))
y<i+l> _ (A+/1I )—1(/1y<i> : fy(X<i>’ y<i>))
e The matrix A+Al is pentadiagonal banded and can be
inverted fast using LU-decomposition.

e A whole set of contour points is found for each
solution.
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