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INF 5300 
Introduction

Feature selection and principal component 
analysis

Lecturers: 

• Asbjørn Berge

• Anne Schistad Solberg
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Contact information

• Asbjørn Berge 
– On IFI wednesdays, room 4457y ,

Email: asbjorn.berge@sintef.no

• Anne Schistad Solberg
– Room 4458 
– anne@ifi.uio.no , 22852435
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Course hightlights

• Two main parts:
– Computer visionp
– Pattern recognition 

• One mandatory exercise
– Individual themes
– Can be linked to your master topic if requested
– Deadline can be fitted to your schedule if it fits with the 

course schedule.

• New this year: lab exercise sessions 
• Oral exam if less than 10 approx.  students
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Lecture plan
• 23.01: Feature selection and transforms                         (Anne)

• 30.01: Fisher’s linear discriminant (Anne)( )

• 06.02: Lab exercise on feature transforms                       (Anne)

• 13.02: Classification and clustering in video (Asbjørn)

• 20.02: Randomized algorithms (Asbjørn)

• RANSAC, forest algorithms, overcomplete feature sets.

• 27.02: Lab on video and randomized algorithms.               (Asbjørn)

• 06.03: Motion cues from video                                     (Asbjørn)( jø )

• Following invariant features and calculating flow

• 13.03: Classification with Support Vector Machines         (Anne)

• 20.03: Lab on Support Vector Machines (Anne)
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Lecture plan cont.
• 03.04: Deformable contours and snakes   (Anne)
• 10.04: More on snakes                           (Anne)                     
• 17.04: Geometry in video                        (Asbjørn)

• Stereo and structured light

• 24.04: Lab on geometry/motion in video   (Asbjørn)
• 08.05: Statistical tracking                         (Asbjørn)

• Particle filters, predictive tracking

• 15.05: Lab or repetition.                          (Asbjørn)
• 22.05: Repetition22.05: Repetition                                    
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Curriculum for today

• The lecture is based on the following sections from 
”Pattern Recognition” by S. Theodoridis and K. g y
Koutroumbas:

• 5.1 
• 5.2.2 Feature normalization
• 5.5.3 Scatter matrices
• 5.6 Feature subset selection

h ’ l d f ( l )• 5.7 Fisher’s linear discriminant function (next lecture)
• 6.1-6.3 Principal component analysis
• See 

http://www.uio.no/studier/emner/matnat/ifi/INF5300/v12/undervisningsmateriale/inf5300_f
eatsel_chap5.pdf

• http://www.uio.no/studier/emner/matnat/ifi/INF5300/v12/undervisningsmateriale/chap6PC
AogAppendixB.pdf

INF 5300 6



4

Reminder - Basic classification principles

Classification task:
• Classify object                     to one of the R classes nxxx ,...,1

R ,...1

• Decision rule d(x)=r divides the feature space into R 
disjoint subsets Kr, r=1,...R.

• The borders between subsets Kr, r=1,...R are defined by R 
scalar discrimination functions g1(x),....gR(x)

• The discrimination functions must satisfy:
gr(x)gs(x), sr, for all xKr

• Discrimination hypersurfaces are thus defined by
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gr(x)-gs(x)=0
• The pattern x will be classified to the class whose 

discrimination function gives a maximum:
d(x)=r  gr(x) = max gs(x)

s=1,...R

Reminder - Bayesian classification

• Prior probabilities P(r) for each class
• Bayes classification rule: classify a pattern x to theBayes classification rule: classify a pattern x to the 

class with the highest posterior probability P(r|x) 
P(r|x) = max P(s|x)

s=1,...R

• P(s|x) is computed using Bayes formula
   ss
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• x is a d-dimensional feature vector
• s is one of K classes
• p(x| s) is the class-conditional probability density 

for a given class.
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Reminder - Classification with Gaussian 
distributions

• Probability distribution for n-dimensional Gaussian vector: 
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• s and s are not known, but they are estimated from M training 
samples as the Maximum Likelihood estimates

If we have many features –
The curse of dimensionality

• Assume we have S classes and a d-dimensional feature vector.
• With a fully multivariate Gaussian model, we must estimate S 

different mean vectors and S different covariance matricesdifferent mean vectors  and S different covariance matrices 
from training samples.

• Assume that we have Ms training samples from each class
• Given Ms, there is a maximum of the achieved classification 

s̂ has d elements

s̂ has d(d-1)/2 elements
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performance for a certain value of d (increasing d beyond this 
limit will lead to worse performance after a certain).

• Adding more features is not always a good idea!
• If we have limited training data, we can use diagonal covariance 

matrices or regularization.
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How do we beat the ”curse of dimensionality”?

• Use regularized estimates for the Gaussian case
– Use diagonal covariance matricesg
– Apply regularized covariance estimation

• Generate few, but informative features
– Careful feature design given the application

• Reducing the dimensionality
– Feature selection
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Feature selection
– Feature transforms

Regularized covariance matrix estimation

• Let the covariance matrix be a weighted combination of a class-
specific covariance matrix k and a common covariance matrix  
:

where 01 must be determined, and nk and n is the number 
of training samples for class k and overall. 

• Alternatively: 
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where the parameter 01 must be determined. 
• The effect of these are that we can use a quadratic classifier 

even if we have little training data/ill-conditioned k

• We still have to be able to compute k, but the only the 
regularized/more robust k(α) or k(β) must be inverted.

    kk 
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Feature selection

• Given a large set of N features, how do we select the 
best subset of m features?
– How do we select m?
– Finding the best combination of m features out a N possible 

is a large optimization problem.
– Full search is normally not possible.
– Suboptimal approaches are often used.
– How many features are needed?
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• Alternative: compute lower-dimensional projections 
of the N-dimensional space
– PCA
– Fisher’s linear discriminant
– Projection pursuit and other non-linear approaches

Preprocessing - data normalization

• Features may have different ranges
– Feature 1 has range f1min-f1maxg min max

– Feature n has range fnmin-fnmax

– This does not reflect their significance in classification 
performance!

– Example: minimum distance classifier uses Euclidean 
distance

• Features with large absolute values will dominate the classifier

INF 5300 14
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Feature normalization
• Normalize all features to have the same mean and variance.
• Data set with N objects and K features
• Features x i=1 N k=1 K• Features xik, i=1...N, k=1,...K
Zero mean, unit variance: Softmax (non-linear)
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Remark: normalization may destroy important discrimination 
information
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Feature selection
• How do we find the best subset of m out 

of n features. 
• Search strategy• Search strategy

– Exhaustive search implies       if we fix m
and 2 n if we need to search all possible m
as well.

– Choosing 10 out of 100 will result in 1013

queries to J
– Obviously we need to guide the search!

• Objective function (J)
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– ”Predict” classifier performance
– Decides how good a subset if
– We can use either a distance measure or 

the actual classification accuracy.
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Distance measures to compute the 
criterion function J

• Between two classes:
– Distance between the closest two points?

Maximum distance between two points?– Maximum distance between two points?
– Distance between the class means?
– Average distance between points in the two classes?
– Which distance measure?

• Between K classes:
– How do we generalize to more than two classes?

Average distance between the classes?
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– Average distance between the classes?
– Smallest distance between a pair of classes?

Note: Often performance should be evalued in terms of 
classification error rate (e.g. on the training set or on a 
validation set). But this is slower than computing simple 
distance measures. 

Class separability measures

• How do we get an indication of the separability 
between two classes?
– Euclidean distance between class means |r- s|
– Bhattacharyya distance

• Can be defined for different distributions
• For Gaussian data, it is
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– Mahalanobis distance between two classes:
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Divergence 

• Divergence (see 5.5 in Theodoridis and 
Koutroumbas) is a measure of distance between )
probability density functions.

• Mahalanobis distance is a form of divergence 
measure. 

• The Bhattacharrya distance is related to the Chernoff 
bound for the lowest classification error.

• If two classes have equal variance  = then the
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• If two classes have equal variance 1=2, then the 
Bhattacharrya distance is proportional to the 
Mahalanobis distance. 

Method 1 - Individual feature selection

• Each feature is treated individually (no correlation/covariance 
between features is consideren)

• Select a criteria, e.g. a distance measure
• Rank the feature according to the value of the criteria C(k)
• Select the set of features with the best individual criteria value
• Multiclass situations:

– Average class separability or
– C(k) = min distance(i,j) - worst case Often used
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• Advantage with individual selection: computation time
• Disadvantage: no correlation is utilized.
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Individual feature selection cont.
• We can also include a simple measure of feature correlation.
• Cross-Correlation between feature i and j: (|ij|1)

N

• Simple algorithm:
– Select C(k) and compute for all xk, k=1,...m. Rank in 

descending order and select the one with best value. Call 
this xi1.

– Compute the cross-correlation between xi1 and all other 
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p i1
features. Choose the feature xi2 for which 

– Select xik, k=3,...l so that

 
j

ijjCi ji 1212  allfor  )(maxarg
1

 

j

ij
k

jCi ji

k

r
k 1

1

1

2
1  allfor  

1
)(maxarg

1











 







Method 2 - Sequential backward selection

• Select l features out of m
• Example: 4 features x1,x2,x3,x4

• Choose a criterion C and compute it for the vector [x1,x2,x3,x4]T

• Eliminate one feature at a time by computing [x1,x2,x3]T, 
[x1,x2,x4]T, [x1,x3,x4]T and [x2,x3,x4]T

• Select the best combination, say [x1,x2,x3]T.

• From the selected 3-dimensional feature vector eliminate one 
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more feature, and evaluate the criterion for [x1,x2]T, [x1,x3]T, 
[x2,x3]T and select the one with the best value.

• Number of combinations searched: 
1+1/2((m+1)m-l(l+1))
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Method 3: Sequential forward selection

• Compute the criterion value for each feature. Select the 
feature with the best value, say x1.

• Form all possible combinations of features x1 (the winner at 
the previous step) and a new feature, e.g. [x1,x2]T, [x1,x3]T, 
[x1,x4]T, etc. Compute the criterion and select the best one, 
say [x1,x3]T.

• Continue with adding a new feature.
• Number of combinations searched: lm-l(l-1)/2.

– Backwards selection is faster if l is closer to m than to 1
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– Backwards selection is faster if l is closer to m than to 1. 

Method 4: Plus-L Minus-R Selection (LRS)
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Method 5: Bidirectional Search (BDS)
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Method 6: Floating search methods
• Problem with backward selection: if one feature is excluded, it 

cannot be considered again. 
• Floating methods can reconsider features previously discarded• Floating methods can reconsider features previously discarded.
• Floating search can be defined both for forward and backward 

selection, here we study forward selection. 
• Let Xk={x1,x2,...,xk} be the best combination of the k features 

and Ym-k the remaining m-k features. 
• At the next step the k+1 best subset Xk+1is formed by 

’borrowing’ an element from Ym-k.
Th t t i l l t d l di i b t t
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• Then, return to previously selected lower dimension subset to 
check whether the inclusion of this new element improves the 
criterion. 

• If so, let the new element replace one of the previously selected 
features.
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Algorithm for floating search

• Step I: Inclusion
xk+1=argmaxyYm-kC({Xk,y}) (choose the element from Ym-kk+1 g yYm k ({ k,y}) ( m k 
that has best effect of C when combined with Xk).
Set Xk+1= {Xk, xk+1}. 

• Step II: Test
1. xr= argmaxyXk+1

C({Xk+1-y}) (Find the feature with the 
least effect on C when removed from Xk+1)

2. If r=k+1, change k=k+1 and go to step I.
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3. If rk+1 AND C({Xk+1-xr})<C(Xk), goto step I. (If removing 
xk did not improve the cost, no further backwards 
selection)

4. If k=2 put Xk= Xk+1- xr and C(Xk)=C(Xk+1- xr). Goto step I.

Algorithm cont.

• Step III: Exclusion
1.Xk’=Xk+1-xr (remove xr)k k+1 r ( r)
2.xs= argmaxyXk’C({Xk’-y}) (find the least significant feature 
in the new set.)
3.If C(Xk’- xs)<C(Xk-1) then Xk= Xk’ and goto step I. 
4.Put Xk-1’=Xk’-xs and k=k-1. 
5.If k=2, put Xk=Xk’ and C(Xk)=C(Xk’) and goto step I.
6.Goto step III.
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Floating search often yields better performance than 
sequential search, but at the cost of increased 
computational time. 
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Optimal searches and randomized methods
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Sequential Floating Search (SFFS and SFBS)
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Feature transforms

• We now consider computing new features as linear 
combinations of the existing features.g

• From the original feature vector x, we compute a 
new vector y of transformed features
y=ATx
y is l-dimensional, x is m-dimensional, A is a lm matrix.

• y is normally defined in such a way that it has lower 
dimension than x.
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dimension than x.


