INF 5300 Advanced Topic: Video Content Analysis

Geometry and image sequences _.._

Asbjern Berge
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Demo: Realtime 3D mapping

«  Track features in 3D
data from a Kinect to
simultaneously map
the surroundings and
locate the camera.

» Fundamentally these
ideas behind
autonomous robot
navigation.
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Reading materials and toals

R. Szeliski: Computer Vision: Algorithms and Applications

Chapters 4.1,6.1 and 7.1+7.2, http://szeliski.ora/Book/

David G. Lowe, Distinctive image features from scale-invariant

keypoints, International Journal of Computer Vision, 60, 2 (2004), pp. 91-110. [PDF]

M. Zuliani: Ransac for dummies
http://vision.ece.ucsb.edu/~zuliani/Research/RANSAC/docs/RANSACADummies.pdf
Snavely, Seitz, Szeliski, Photo Tourism: Exploring Photo Collections in 3D. SIGGRAPH
2006. http://phototour.cswashington.edu/Photo_Tourism.pdf

Ransac toolbox : https://qgithub.com/RANSAC/RANSAC-Toolbox

VIFeat toolbox: http://www.ylfeat.org
OpenCV 3D reconstruction: http://docs.opencv.ora/modules/calib3d/doc/calib3d.html
VisualSfm :http://homes.cswashington.edu/~-ccwu/vsfm/

PhatoSynth: http://photosynth.net/
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Inferring 3D from 2D images

«  Structure from mation

+ 0btain 3D scene structure from
multiple images from the same camera
in different locations, poses

* Typically, camers location & pose
treated as unknowns

+ Track points acrass frames, infer
camera pose & scene structure from
correspondences

« Simultaneous Location And Mapping (SLAM)

* Localize a robot and map its
surroundings with a single camera
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3D Reconstruction

Internet Photos (“Colosseum”) Reconstructed 3D cameras and points

http://photosynth.net/default.aspx

http://phototour.cs.washington.edu/applet/index.html
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Image 1 Image 3

Rl’tl R3’t3

Image 2
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» QOutput

SINTEF

Structure from motion
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* Input: images with paints in carrespondence pi = (

* structure: 3D location x, for each point g,
* motion: camera parameters R;, t;

* (Objective function: minimize reprojection error

Technology for a better society

Image 1

Rt

SINTEF

Image 3

\ R, t,
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SfM objective function

* Given point x and rotation and tra}‘slapon R, t
X

x' u'=—
’ Z u'
o oY v

’

z

*  Minimize sum of squared reprojection errors:

JXRT) = ZZWU [Poc R [vu]”z

i=1 j=1

predlcted observed
image location image location
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Solving structure from motion

*  Minimizing g is difficult:
— gisnon-linear due ta rotations, perspective division
— lots of parameters: 3 for each 3D point, 6 for each camera
— difficult to initialize

— gauge ambiguity: error is invariant to a similarity transform (translation, ratation, uniform
scale)

+  Many techniques use non-linear least-squares (NLLS) optimization (bundle
adjustment)
— Levenberg-Marquardt is ane common algorithm for NLLS
— Lourakis, The Design and Implementation of 8 Generic Sparse Bundle Adjustment

Software Package Based on the Levenberg-Marquardt Algorithm,
http://www.ics.forth.gr/~lourakis/sba/

— http://enwikipedia.org/wiki/L evenberg-Marquardt_algorithm
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Photo Tourism

 Structure from motion on Internet photo collections
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SINTEF Technology for a better society

Photo Tourism
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Photo Tourism overview

Scene
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reconstruction
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Input photographs

Photo Explorer

Relative camera positions
and orientations

Point cloud

“| Sparse correspondence
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Scene reconstruction

e )
Feature detection
\ J
4 - l - A
Pairwise

feature matching

I

Correspondence
estimation
|

Incremental

structure
from mation
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Feature detection
Detect features using SIFT [Lowe, 1JCV 2004]

@ SINTEF Technology for a better society

Feature detection

Detect features using SIFT [Lowe, 1JCV 2004]
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Feature detection

Detect features using SIFT [Lowe, IJCV 2004]
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Feature matching

Match features between each pair of images
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Feature matching

Refine matching using RANSAC [Fischler & Bolles 1987] to be
consistent with a 3D rigid motion
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Incremental structure from motion

SINTEF Technology for a better society
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Incremental structure from motion

SINTEF Technology for a better society

Incremental structure from motion
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BB

Structure from maotion

P3

Camera 1

Rl,tl

Camera 2

Ryt

@ SINTEF

minimize

f(R, T,P)

Camera 3

R3, t3

Technology for a better society
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SfM objective function

Given point x and ratation and translation R, t

X' Wis

u =— ur
y|=Rx+t 7 |=PxRY
o Y v

v Z?

Minimize sum of squared reprojection errors:

IXRT) = ZZWU |P<Xv )= [vl,]”

i=1j=1

predlcted observed
image location image location
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Simple case: translations

How do we solve for
(Xm Yt) ?

(X¢,y¢)

@ SINTEF Technology for a better society
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Simple case: translations

1 1 O
(X, ¥1) = gZXQ—XuEZy;—%
1=1

=1

@ SINTEF Technology for a better society

Another view

Y .

X, +Xt = X

Yit¥t = Y;
» System of linear equations

— What are the knowns? Unknowns?
— How many unknowns? How many equations (per match)?

@ SINTEF Technology for a better society
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Another view

YiTYt = Y;

* Problem: more equations than unknowns
— "Overdetermined” system of equations
— We will find the least squares solution

SINTEF Technology for a better society

Least squares formulation

For each point (X’L . yz)

X, +X¢ = X,

Yitye = Vi

e define theresicits s

e, (X¢) = (x5 +x¢) — X
ry,(yi) = (Yi+ye) -y

SINTEF Technology for a better society
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Least squares formulation

* (Goal: minimize sum of squared residuals

n

C(xt,y1) = > (rx, (x¢)? + 1y, (y1)?)

1=1
* "Least squares” solution
« For translations, is equal to mean displacement
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Least squares formulation
Can also write as a matrix equation

(1 0] [ 2 — ]
0 1 Y1 — Y1
1 0 xh — x9
0 1 Lol | yy— e

: Yt .

1 0 x, — Ty

| 0 1] | y% —Yn |
2nx 2 2x1 2nx1

SINTEF Technology for a better society
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Least squares

e Find t that minimizes

At=Db

- To solve, form the normal equations
|At — bl|”
AT"At=A"D
t=(ATA)  A"b
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Projection matrix

0
1 0 0 O
II=K |[0100 R o I3><3 —C
_— 0 0 1 0 0
intrinsics 0O 0 0 1 0O 0 0 1
projection rotation translation

|

"R | _Re |

(tin book’s notation)

IM=K| R |-Rc]

SINTEF Technology for a better society
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Projection matrix

y ’qz(x7y7271)
Z
0 (in homogeneous image coordinates)
X
@ SINTEF Technology for a better society
Why Masaic?

 Are you getting the whole picture?
— Compact Camera FOV =50 x 35°
— Human FOV =200x 135°
— Panoramic Mosaic =360 x 180°

@ SINTEF Technology for a better society
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Projective Transformations aka Homographies aka
Planar Perspective Maps

a b ¢
H=|d e f
g h 1

Called a homography

projection of 3D plane can be explained by a (homogeneous) 2D transform

@ SINTEF Technology for a better society

Image warping with homographies

4

image plane in front  black area
where no pixel
maps to




Homographies

* Homagraphies ... o a b e .
— Affine transformations, and Yy’ =|d e f Yy
— Projective warps w’ g h 1 w

* Properties of projective transformations:
— Origin does not necessarily map to origin
— Lines map to lines
— Parallel lines do nat necessarily remain parallel
— Ratios are not preserved
— (Closed under compasition

SINTEF Technology for a better society

20 image transformations
translation
—r
Euclidean Aﬁ _
—
Name Matrix #D.O.F. | Preserves: Icon
translation { I ‘ t ]_) 5 2 orientation + - - - j
rigid (Euclidean) [ R ‘ t L 4 3 lengths + - - - Q
similarity [ sR | t sz 4 angles + - - - Q
affine [ A ]QX“ 6 parallelism + - - - D
projective [ H ]zx'z 8 straight lines lj
These transformations are a nested set of groups
¢ Closed under composition and inverse is a member
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Geometric interpretation of mosaics

SINTEF Technology for a better society

Geometric Interpretation of Mosaics

Optical Center

If we capture all 360° of rays, we can create a 360° panarama
The basic operation is projecting an image from one plane ta anather
The projective transformation is scene-INDEPENDENT

This depends on all the images having the same optical center
* http://archive.bigben.id.au/tutorials/360/photo/nodalhtml

SINTEF Technology for a better society
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Projecting images onta a comman plane

SN mosaic PP

@ SINTEF Technology for a better society

What is the transformat‘kon?

Image 2
Optical Center Xs To
—1
Yy =K, Y2
Zs 1
3D ray coords | image coords
(in camera2) (in image 2)
Xl i)
Tyr—1
Z4 1
3D ray coords image coords
. . (in camera 1) B (inimage 2)
How do we transform image 2 onto image
1’s projection plane?
proj p T o
image 1 image 2 Tyr—1
: g n | ~KiIRIRIKS ! | 4
R] == Ig %3 RQ image coords 3x3 homography image coords
(inimage 1) (inimage 2)

SINTEF Technology for a better society
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Image alignment

@ SINTEF Technology for a better society

Image alignment

@ SINTEF Technology for a better society
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Affine transformations

€T a b ¢ T
y | =|d e f Y
1 0O 0 1 1

How many unknowns?
How many equations per match?
How many matches do we need?

SINTEF Technology for a better society

Affine transformations

Residuals:
Ty, ((L, ba c, da €, f) - (CLLE,L' + by% =+ C) o ':U;
Tyi(a,b,c,d,e,f) - (d:c’b + ey + f) - y;
O((l,b, C, dvevf) —
Z ('r:ri ((L, b: C, d: €, f)2 + 'ry.i ((L, b: C, dr €, f)Q)
i=1
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Affine transformations
e Matrix form
fxy oy 10 0 07 T ]
0 0 0 a vy 1] _ T Y
2 y2 1 0 0 O b @}
0 0 0 2z wy 1 e | Y
g 1=
e
Tn Yo L 0 0 0| - /] &
L0 0 0 2, yn 1. L Yy
Eé; 6x1 B .zlr91
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Homographies

To unwarp (rectify) an image
¢ solve for homography H given p and p’
* solve equations of the form: wp’ = Hp
— linear in unknowns: w and coefficients of H
— His defined up to an arbitrary scale factor

— how many points are necessary to solve for H?
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Image Alignment Algarithm

Given images Aand B
1. Compute image features for A and B

2. Match features between A and B

3. Compute homography between A and B using least
squares on set of matches

What could go wrang?

SINTEF Technology for a better society

Robustness
outliers
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VLFeat demo of Ransac Homography fit

@ SINTEF Technology for a better society

Feature extraction: Corners and blobs

@ SINTEF Technology for a better society
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Invariant local features

Find features that are invariant to transformations
— geometric invariance: translation, rotation, scale
— photometric invariance: brightness, exposure, ...

Feature Descriptors

@ SINTEF Technology for a better society

Advantages of local features

Locality

— features are local, so robust to occlusion and clutter
Quantity

— hundreds or thousands in a single image
Distinctiveness:

— can differentiate a large database of objects
Efficiency

— real-time performance achievable

SINTEF Technology for a better society
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Local measures of uniqueness

Suppaose we only consider a small window of pixels
— What defines whether a feature is a3 good or bad candidate?

IS

S

SINTEF

Technology for a better society

Local measure of feature unigueness

* How does the window change when you shift it?
 Shifting the window in any direction causes a big

change

“flat” region: “edge”: “corner”:

no change in all no change along the significant change in

directions edge direction all directions
SINTEF Technology for a better society
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Harris corner detection: the math

Consider shifting the window W by (u,v)

e how do the pixels in W change? \
e compare each pixel before and after by w

summing up the squared differences (SSD)

e this defines an SSD “error” E(u,v):

B(u,v)= Y [Iz+uy+v)—I(zy)]
(z,y)eW

SINTEF Technology for a better society

Small motion assumption

Taylor Series expansion of /:

I(z+u, y+v) = I(x,y)+%u+g—£v+higher order terms

If the motion (u,v) is small, then first order approximation is good

I(:z:—|—u,y—|—v)%[(x,y)—l—%u—l—g—£v
~ 1(z,y) + Lo fy]m

shorthand: I, = 9L

Plugging this into the formula on the previous slide...

SINTEF Technology for a better society
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Corner detection: the math

Consider shifting the window W by (u,v) " \

o define an SSD “error” E(u,v):

E(u,v) = Z [I(CU—I-U,TJ—FU)—I(CU:Z/)]Q
(z.y)eW

I(x,y) + Lyu+T,o—1I(x,y 2
)
(z,y)eW

Z [L,u+ nyu]Q

(x,y)eW

SINTEF Technology for a better society

&2

Q

Corner detection: the math

Consider shifting the window W by (u,v) " \

o define an SSD “error” E(u,v):

E(u,v) =~ Z [Lyu + Iv)
(x,y)eW
~ Au® + 2Buv + Cv?

A= Y II B= > L, c= > I

(z,y)eW (z,y)eW (z,y)eW

e Thus, E(u,v) is locally approximated as a quadratic error function
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The second moment matrix
The surface E(u,v) is locally approximated by a quadratic form.

E(u,v) ~ Au®+2Buv+ Cv?
A B u
~[u v ]

B C v
A= Y I '
(wg)EW H
B= Z L1,
(x,y)eW
c= > I
(z,y)eWw

Let’s try to understand its shape.

SINTEF Technology for a better society

A= > I

Iy 0 O
(w,y)eW =

0 C
B- Y Ly

(x,y)EW
C= > I

(@,y)eEW

Horizontal edge: [,, — () / /
e Ty

— 1
u [ “T'*";f:“‘

SINTEF Technology for a better society
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A= Y P H:glO

SINTEF Technology for a better society

(z,y)eW O
B= >, Ll
7 \\\\\
(z,y)eW E(u,v)”_{ %\%\\\x& '
) 4 IRTHRHnHk
C= > I A
(@y)e Vertical edge: Iy =0 e g et
c"'r:':r—,—ﬂt —— /’m"‘m/(v
u HR";-—T},_f/rn

General case

We can visualize H as an ellipse with axis lengths
determined by the eigenvalues of H and orientation
determined by the eigenvectors of H

A

: eigenvalues of H

max> ““min

Ellipse equation: direction of the
fastest change

u .
direction of the
[M V] H v = const ' slowest change

SINTEF Technology for a better society
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Corner detection: the math
A B
Bu,v)~|u v ] B C

\_'_J
H

Uu

min

Hzmax = AmaxTmax

max

mein = )\minxmin

Eigenvalues and eigenvectors of H
¢ Define shift directions with the smallest and largest change in error
* X, = direction of largest increase in E
* Amax = @amount of increase in direction X,
® X, = direction of smallest increase in £
* L., = amount of increase in direction x,,

SINTEF Technology for a better society

Corner detection: the math
How are A Amine @Nd X, relevant for feature detection?
* What's our feature scoring function?

max’ maxl min’

Want E(u,v) to be large for small shifts in all directions
* the minimum of E(u,v) should be large, over all unit vectors [u v]
* this minimum is given by the smaller eigenvalue (A;,) of H

max mlIl

' SINTEF Technology for a better society
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Interpreting the eigenvalues

Classification of image points using eigenvalues of M:

P
}\12 GCEdge’7
Ay>> 0

“Corner” ‘

A, and A, are large,
A~y

E increases in all
directions

A, and A, are small;
E is almost constant :> “Flat” “Edge”
in all directions region Ay >> A,

SINTEF Technology for a better society

Corner detection summary

e Compute the gradient at each point in the image

e Create the H matrix from the entries in the gradient

e Compute the eigenvalues.

> threshold)

Choose those points where A, is a local maximum as features

L

max mln

SINTEF Technology for a better society

e Find points with large response (A,

35



Corner detection summary

e Compute the gradient at each point in the image

¢ Create the H matrix from the entries in the gradient
e Compute the eigenvalues.

¢ Find points with large response (M. > threshold)

* Choose those points where A .. is a local maximum as features

min

>\min

SINTEF Technology for a better society

The Harris operator

Amin is @ variant of the “Harris operator” for feature detection

PSPy
=X +%
__ determinant(H)
o trace(H)

e The trace is the sum of the diagonals, i.e., trace(H) = h;; + h,,
e Very similar to A, but less expensive (no square root)

Called the “Harris Corner Detector” or “Harris Operator”
¢ Lots of other detectors, this is one of the most popular

SINTEF Technology for a better society
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The Harris operator

Harris
operator

)\min

SINTEF Technology for a better society

Harris Detector — Responses [Harrisss]

SINTEF Technology for a better society



Weighting the derivatives

* Inpractice, using a simple window ¥ doesn't work too well
2
He Y 2 I,
1,1, I?
Yy
(z,y)eW

* Instead, we'll weight each derivative value based on its distance from the center pixel

2 LI,
H= ), wx’y[Iny 2 1
(z,y)eW

Wy,y

SINTEF Technology for a better society

Harris Detector: Invariance Properties

B
& B

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

Corner response is invariant to image rotation

SINTEF Technology for a better society
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Harris Detector: Invariance Properties

Affine intensity change: 7 — al + b

v' Only derivatives are used =>
invariance to intensity shift/ > 7+ b

v Intensity scale: I - a [
© ‘ M N
N |
/ / \ \J \

threshold W

X (image coordinate) X (image coordinate)

Partially invariant to affine intensity change

SINTEF Technology for a better society

Harris Detector: Invariance Properties

* Scaling

/I

Corner

All points will be
classified as edges

Not invariant to scaling

SINTEF Technology for a better society
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Scale invariant detection

Suppaose you're looking for carners

Key idea: find scale that gives local maximum of £
— in both position and scale
— One definition of f: the Harris operator

@ SINTEF Technology for a better society

Automatic Scale Selection

1, x0) = [, (x'.0")

Same operatar responses if the patch contains the same image up to scale
factor. How to find corresponding patch sizes?

@ SINTEF Technology for a better society
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Automatic Scale Selection

Function respanses for increasing scale (scale signature)

AL g\

scale 19 o ale
S, (x,0)) f(lil...im (x',0))

SINTEF Technology for a better society

Automatic Scale Selection

Function resp

4

SINTEF Technology for a better society
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Automatic Scale Selection

Function resp

4

SINTEF Technology for a better society

Automatic Scale Selection

SINTEF Technology for a better society
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Automatic Scale Selection

Function responses far increasi

ng scale (scale signature)

g

rd, ., (x,0) S, ,, (x',0))
@ SINTEF Technology for a better society

Automatic Scale Selection

Function respanses for increasing scale (scale signature)

; e
fU, , (x,0)) S, (x,0")

@ SINTEF Technology for a better society
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Implementation

» Instead of computing ffor larger and larger windows, we can implement using a fixed
window size with a Gaussian pyramid

(sometimes need to create in-
between levels, e.g. a %-size image)

@ SINTEF Technology for a better society

Anaother common definition of F

+  The Laplacian of Gaussian (LoG)

azg 82g (very similar to a Difference of Gaussians (DoG) —
i.e. a Gaussian minus a slightly smaller Gaussian)

@ SINTEF Technology for a better society
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Laplacian of Gaussian
*  'Blob" detector

+  Find maxima and minima of LoG operator in space and scale minima

maximum

@ SINTEF Technology for a better society

Scale selection

At what scale does the Laplacian achieve a maximum response for a binary circle of
radius r?

image Laplacian

@ SINTEF Technology for a better society
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Characteristic scale

We define the characteristic scale as the scale that produces peak of Laplacian response

2000

BOD| -t

characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116.

@ SINTEF Technology for a better society

Scale-space blob detector: Example

SINTEF Technology for a better society
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Scale-space blob detector: Example

sigma = 11.9912

SINTEF Technology for a better society

Scale-space blob detector: Example

SINTEF Technology for a better society
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Scale Invariant Feature Transfarm (SIFT)

1. Take a 16 x16 window around interest point
(i.e., at the scale detected).

2. Divide into a 4x4 grid of cells.

3. Compute histogram of image gradients in each
cell (8 bins each).

16 histograms x 8 orientations
= 128 features

E‘»"*ﬂ

o
Bt

Image gradients Keypoint descriptor

SINTEF Technology for a better society

SIFT Computation - Steps

(1) Scale-space extrema detection
— Extract scale and rotation invariant interest points (i.e, keypoints).
(2) Keypoint localization
— Determine location and scale for each interest point.
— Eliminate "weak" keypoints
(3) Orientation assignment
— Assign one or more arientations to each keypoint.
(4) Keypoint descriptor
— Use local image gradients at the selected scale.

D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, International Journal

of Computer Vision, 60(2):91-110, 2004. . .
Cited 13629 times (as of 17/4/2012)

SINTEF Technology for a better society
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Scale-space Extrema Detection
scale
« Harris-Laplace >
T
Find local maxima of: A~ Q
— Harris detector in space ¥ N :
— LoGin scale v
<« Harris > X
e SIFT scale
_ _ 0
Find local maxima of: P Q
— Hessian in space v &)
— DoGin scale S~ \
< Hessian —» X

SINTEF Technology for a better society

Scale-space Extrema Detection

* DoG images are grouped by octaves (i.e., doubling of o)
* Fixed number of levels per octave

e ==
D(x,y,0) =

Scale

o | —
m ) L(xnyako-)_l‘(x,y,o-)
down-sample .
whnere
L(x,y,0)=
G(x,y,0)*I(x,y)
Difference of

Gaussian (DOG)

Gaussian

SINTEF Technology for a better society
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Scale-space Extrema Detection

* Extract local extrema (i.e., minima or maxima) in DoG
pyramid.

-Compare each point to its 8 neighbors at the same level, 9
neighbors in the level above, and 9 neighbors in the level below (i.e.,

26 total).

SINTEF Technology for a better society

Keypoint Localization

+ Determine the location and scale of V.
keypoints to sub-pixel and sub-scale S F

accuracy by fitting a 3D quadratic v
. Scale . o
polynomial: A
L L7 LT

Y keyp_oint ST T T
;= (xl. s Vis U,-) location A

AX:(X—X[,y—yi,O'—O'[) offset
Substantial
sub-pixel, sub-scale
Xi < Xi +AX Estimated location |mpr0\_/ement to -
matching and stability!

SINTEF Technology for a better society




Keypoint Localization

« Use Taylor expansion to locally approximate D(x,y,c) (i.e, DoG
function) and estimate Ax:

T 2
D(AX) = D(X,)+MAX+1AXT aD—(f(f)AX
oX 2 0
+ Find the extrema of D(AX):

oD(X)) . 0’D(X))
oX oxX’

SINTEF Technology for a better society

AX =0

Keypoint Localization

0°D(X.) oD(X,) *D(X,) aD(X))
D e — i AX —— i i
axt X oxX ox* X

* AXcan be computed by solving a 3x3 linear system:

[6’'D &'D oD apl @D Dy -D)

0o’ Ooy dox Ao o oo 2 use finite
o’D 8*D 8*D Ay |- oD | &’D _ Dy -2D; + Dy}, differences:
doy o om { Ai] | o0 I

¢’b D D D &b _ (DL ~D) = (D =Dy
| Oox  Oyx ox? | Ox doy B 4

If AX>0.5 in any dimension, repeat.

SINTEF Technology for a better society
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Keypoint Localization

. keypaints having low contrast.
— (e, sensitive to noise

If |D(X,+AX)[<0.03 reject keypoint

—i.e., assumes that image values have been normalized in
[0,1]

SINTEF Technology for a better society

Keypoint Localization
paints lying on edges (or being close to edges)

Harris uses the auto-correlation matrix:

e 2[5

R(A,) = det(A,) - a trace’(A,)

or  R(A,) =X Ao (kg L)

SINTEF Technology for a better society
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Keypaint Localization

+ SIFT uses the Hessian matrix (for efficiency).
— e, Hessian encodes principal curvatures

Ho Dy, ny o: largest eigenvalue (Apax)
~—|D,, D B: smallest eigenvalue (A,,;,)
Y w (proportional to principal curvatures)

Tr(H) = Daz + Dy = a + §, — TH? _ @+p?  wp+A o+ 1)

Det(H) = DyyDyy — (Dgy)* = . Det(H)  wpf r? r

(r=a/p)

(SIFT uses r = 10)

TE)? (r 1)
Det(H)

@ SINTEF Technology for a better society

Reject keypoint if:

Keypaint Localization

(3) 233x189 image
(b) 832 DoG extrema

(c) 729 left after low
contrast threshold

(d) 536 left after testing
ratio based on Hessian

@ SINTEF Technology for a better society



Orientation Assignment

+ (Create histogram of gradient directions, within a region around
the keypoint, at selected scale:

L(x,y,0) = G(x,y,0)*I(x,)

m(x,y) = \/(L(X +1,9) = L(x=1,9))* + (L(x,y +1) = L(x, y = 1))’
O(x,y)=atan 2((L(x,y+1)—=L(x,y-=1))/(L(x+1,y)— L(x—1,y)))

|:> I \ 36 bins (i.e., 10° per bin)

« Histogram entries are weighted by gradlent magmtude and (ii) a
Gaussian function with o equal to 1.5 times the scale of the keypoint.

SINTEF Technology for a better society

Orientation Assignment

 Assign canonical orientation at peak of smaothed histogram (fit parabols to better
localize peak).

* Incase of peaks within 80% of highest peak, multiple orientations assigned to
keypoints.
— About 15% of keypoints has multiple orientations assigned.
— Significantly improves stability of matching.

SINTEF Technology for a better society
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Keypoint Descriptor

SINTEF Technology for a better society

Keypoint Descriptor

1. Take a 16 x16

window U]]:D:D%L (8 bins)

around a_ . %
angle histogram

detected
interest point.

2. Divide intoa |
axdgridof Lo l:>

cells. BE 2t
Image gradients Keypoint descriptor
3. ComPUte 16 histograms x 8 orientations
histogram in = 128 features
each cell.
SINTEF Technology for a better society
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Keypaint Descriptor

- Each histogram entry is weighted by (i) gradient magnitude and
(ii)  Gaussian function with ¢ equal to 0.5 times the width of

the descriptor window.
0 2n
|:> angle histogram

SINTEF Technology for a better society

Keypoint Descriptor

* Partial Voting: distribute histogram entries into adjacent bins
(e, additional robustness to shifts)

— Eachentry is added to all bins, multiplied by a weight of 1-d,
where d is the distance from the bin it belongs.

SINTEF Technology for a better society
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Properties of SIFT

Extraordinarily robust matching technique
— Can handle changes in viewpoint
Up to about 60 degree out of plane rotation
— Can handle significant changes in illumination
Sometimes even day vs. night (below)
— Fastand efficient—can run in real time

— Lots of code available
http://people.csailmit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

NASA Mars Rover
images

with SIFT feature
matches
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SIFT Example

MAKING

QUC :

STORYIEUUNG STCHETS OF COMICS, MANGA. AND GRAPHIC HOVILS | .

SCOTT McCLOUD

868 SIFT features

SINTEF Technology for a better society
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Local Descriptars: SURF

Fast approximation of SIFT idea

Efficient computation by 2D box Filters &
integral images
= 6 times faster than SIFT

Equivalent quality for object identification

GPU implementation available

Feature extraction @ 100Hz
(detector + descriptor, 640 X 480 img)

http://www.vision.ee.ethz.ch/~surf

[Bay, ECCV’06], [Cornelis, CVGPU’08]

@' SINTEF Technology for a better society

Main points of this lecture

* Maving the same camera restricts the geometry allowing inference about 3D
Potential uses range from masaicing to egomotion estimation
— In principle the same mechanism that human depth perception is based on
» Stereo/ multiview stereo. You should be able to describe the concepts.
* Remember the RANSAC algorithm and understand why it works
— Simple, fast algorithm applicable in very many tasks
— Important part of your toolbox
» (@rasp the concept of scale-invariant features
— Example: SIFT algorithm (location and description)
» (Geometry and image transforms is out of scape for this course
— But part of INF 2310 - so you knaw all this!

SINTEF Technology for a better society
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Bonus slides

SINTEF Technology for a better society 117

Active stereo with structured light

Li Zhang’ s one-shot stereo

camera 1 camera 1
projector projector
camera 2

* Project "structured” light patterns onta the object

— simplifies the correspondence problem
SINTEF Technology for a better society 118




Related topic: Drift

b S = —

L

(Xn/Yn)

copy of first image

— add another copy of first image at the end
— this gives a constraint: y, =y,
— there are a bunch of ways to solve this problem

. ?dd displacement of (y, —y,)/(n - 1) to each image after the
irst

* compute a global warp: y’ =y + ax
* run a big optimization problem, incorporating this constraint
— best solution, but more complicated

SINTEF Technology for a better society

Global optimization

track
-F [ —e-_[_ o1]-- _of-
p?l & P12 .3 P33 Psa Paa
5__‘/ ”
P2, ‘~~-_’t2'_3_-—-.p2’4
I, I, I I

* Minimize a global energy function:

— What are the variables?

* The translation ¢ = (xJ, gj) for each image /

— What is the objective function?

* We have a set of matched features g;; = (u;, v,

— We'll call these tracks

+ For each point match (g, p.1): B =By = 61 — ¢

SINTEF Technology for a better society
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Global optimization

-k 1--@~_| L---@ H-
pO oI P, -|1® p.- P34 Paa
41 P11 P13 33
- p
P21~ -8 - {op.
I, I L 1
w; = 1if track i is visible in images j and j+1
minimize 0 otherwise
P1,—P11=t 1

m n-—1

P13—P1=t— 1,

2
Py3—Pry=t;—t, ¢> Z Z wij - | (0ije1 = D) = @Gar = )|

i=1 j=1
m

Va1~ Vaa=Y17 Vs + Z Win - |1 = vi) = 01 = I
i=1
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Global optimization
AR L
I, I, I I,
X
—1 0 1 0 0 0 0 01/»n
0 -1 0 1 0 0 0 O (]|x U 2—U11
0 0 -1 0 1 0 0 0 ||y2]_[V127V1a
0 0 0 -1 0 1 0 o0]|f*s]" :
V3 VUy1— V44
Lo 1 0 0 0 0 0 —-14*x
[V, ]
A X b
2mx2n 2nx1 2mx1
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(Global optimization

0

0 ||x2 U2~ U1
0 |lY2 V12— V11
0 .

O = OO
= o O O
o O OO

V3 Vg1 V44

A X b

2mx 2n 2nx1 2mx 1
Defines a least squares problem: minimize ||Ax — b|
« Solution: = (ATA)"1ATb
* Problem: there is no unique solution forX ! (det(ATA) = 0)
e We can add a global offset to a solution X and get the same error
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Ambiguity in global location
— ]

(0,0)

ﬁ—|

(-100,-100) S

(200,-200)

Each of these solutions has the same error
(Called the gauge ambiguity
Solution: fix the position of one image (e.g., make the origin of the 15t image (0,0))

SINTEF Technology for a better society
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