

- Track features in 3D data from a Kinect to simultaneously map the surroundings and locate the camera.
- Fundamentally these ideas behind autonomous robot navigation.

(1) SINTEF

Reading materials and tools

R. Szeliski: Computer Vision: Algorithms and Applications

Chapters 4.1, 6.1 and 7.1+7.2, http://szeliski.org/Book/

David G. Lowe, Distinctive image features from scale-invariant

keypoints, International Journal of Computer Vision, 60, 2 (2004), pp. 91-110. [PDF]

M. Zuliani: Ransac for dummies

http://vision.ece.ucsb.edu/~zuliani/Research/RANSAC/docs/RANSAC4Dummies.pdf
Snavely, Seitz, Szeliski, **Photo Tourism: Exploring Photo Collections in 3D**. SIGGRAPH

2006. http://phototour.cs.washington.edu/Photo_Tourism.pdf

Ransac toolbox: https://github.com/RANSAC/RANSAC-Toolbox

VIFeat toolbox: http://www.vlfeat.org

OpenCV 3D reconstruction: http://docs.opencv.org/modules/calib3d/doc/calib3d.html

VisualSfm: http://homes.cs.washington.edu/~ccwu/vsfm/

PhotoSynth: http://photosynth.net/

Technology for a better society

Inferring 3D from 2D images

- Structure from motion
 - Obtain 3D scene structure from multiple images from the same camera in different locations, poses
 - Typically, camera location & pose treated as unknowns
 - Track points across frames, infer camera pose & scene structure from correspondences
- Simultaneous Location And Mapping (SLAM)
 - Localize a robot and map its surroundings with a single camera

Technology for a better society

ļ

Structure from motion

- Input: images with points in correspondence $\rho_{i,j}$ = $(u_{i,j}, v_{i,j})$
- Output
 - structure: 3D location \mathbf{x}_i for each point ρ_i
 - motion: camera parameters $\mathbf{R}_{j},\mathbf{t}_{j}$
- Objective function: minimize reprojection error

SfM objective function

Given point **x** and rotation and translation **R**, **t**

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \mathbf{R}\mathbf{x} + \mathbf{t}$$

$$u' = \frac{fx'}{z'}$$

$$v' = \frac{fy'}{z'}$$

$$\begin{bmatrix} u' \\ v' \end{bmatrix} = \mathbf{P}(\mathbf{x}, \mathbf{R}, \mathbf{t})$$

Minimize sum of squared reprojection errors:

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| \underbrace{\mathbf{P}(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j})}_{\text{predicted image location}} - \underbrace{\begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix} \end{bmatrix}^{2}_{\text{observed image location}} \right\|^{2}$$

Technology for a better society

Solving structure from motion

- Minimizing *g* is difficult:
 - g is non-linear due to rotations, perspective division
 - lots of parameters: 3 for each 3D point, 6 for each camera

 - gauge ambiguity: error is invariant to a similarity transform (translation, rotation, uniform scale)
- Many techniques use non-linear least-squares (NLLS) optimization (bundle adjustment)
 - Levenberg-Marquardt is one common algorithm for NLLS
 - Lourakis, The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm, http://www.ics.forth.gr/~lourakis/sba/
 - http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

SfM objective function

• Given point \mathbf{x} and rotation and translation \mathbf{R} , \mathbf{t}

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \mathbf{R}\mathbf{x} + \mathbf{t} \qquad u' = \frac{fx'}{z'} \\ v' = \frac{fy'}{z'} \qquad \begin{bmatrix} u' \\ v' \end{bmatrix} = \mathbf{P}(\mathbf{x}, \mathbf{R}, \mathbf{t})$$

• Minimize sum of squared reprojection errors:

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| \mathbf{P}(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}) - \begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix} \right\|^{2}$$
observed image location image location

(1) SINTEF

- Problem: more equations than unknowns
 - "Overdetermined" system of equations
 - We will find the *least squares* solution

Technology for a better society

Least squares formulation

- For each point $(\mathbf{x}_i, \mathbf{y}_i)$ $\mathbf{x}_i + \mathbf{x_t} = \mathbf{x}_i'$ $\mathbf{y}_i + \mathbf{y_t} = \mathbf{y}_i'$
- we define the *residuals* as

$$r_{\mathbf{x}_i}(\mathbf{x}_t) = (\mathbf{x}_i + \mathbf{x}_t) - \mathbf{x}_i'$$

 $r_{\mathbf{y}_i}(\mathbf{y}_t) = (\mathbf{y}_i + \mathbf{y}_t) - \mathbf{y}_i'$

(1) SINTEF

Least squares formulation

• Goal: minimize sum of squared residuals

$$C(\mathbf{x}_t, \mathbf{y}_t) = \sum_{i=1}^n \left(r_{\mathbf{x}_i}(\mathbf{x}_t)^2 + r_{\mathbf{y}_i}(\mathbf{y}_t)^2 \right)$$

- "Least squares" solution
- For translations, is equal to mean displacement

Technology for a better society

Least squares formulation

• Can also write as a matrix equation

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} x'_1 - x_1 \\ y'_1 - y_1 \\ x'_2 - x_2 \\ y'_2 - y_2 \\ \vdots \\ x'_n - x_n \\ y'_n - y_n \end{bmatrix}$$

$$\mathbf{A}_{2n \times 2}$$

$$\mathbf{t}_{2x1} =$$

$$\mathbf{b}$$

Least squares

• Find **t** that minimizes

$$At = b$$

• To solve, form the normal equations

$$||\mathbf{A}\mathbf{t} - \mathbf{b}||^2$$
 $\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{t} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$
 $\mathbf{t} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$

(1) SINTER

Technology for a better society

Projection matrix

$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3 \times 3} & -\mathbf{c} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

$$\mathbf{\Pi} = \mathbf{K} \begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

(1) SINTEF

Homographies

- Homographies ...

Homographies ...

- Affine transformations, and
- Projective warps
$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition

Technology for a better society

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[m{I} m{I} m{t} m{]}_{2 imes 3} \end{bmatrix}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg[egin{array}{c c} igg[oldsymbol{R} & t \end{array}igg]_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 \times 3}$	4	angles $+\cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are a nested set of groups

• Closed under composition and inverse is a member

Affine transformations

$$\left[\begin{array}{c} x'\\y'\\1\end{array}\right] = \left[\begin{array}{ccc} a & b & c\\d & e & f\\0 & 0 & 1\end{array}\right] \left[\begin{array}{c} x\\y\\1\end{array}\right]$$

- How many unknowns?
- How many equations per match?
- · How many matches do we need?

Technology for a better society

Affine transformations

Residuals:

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i$$

 $r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$

$$C(a, b, c, d, e, f) = \sum_{i=1}^{n} (r_{x_i}(a, b, c, d, e, f)^2 + r_{y_i}(a, b, c, d, e, f)^2)$$

(1) SINTEF

Affine transformations

• Matrix form

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ & \vdots & & & & \\ x_n & y_n & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ \vdots \\ x'_n \\ y'_n \end{bmatrix}$$

$$\mathbf{A}$$

$$\mathbf{c}$$

SINTEF

Technology for a better society

Homographies

To unwarp (rectify) an image

- solve for homography **H** given **p** and **p'**
- solve equations of the form: wp' = Hp
 - linear in unknowns: w and coefficients of H
 - H is defined up to an arbitrary scale factor
 - how many points are necessary to solve for **H**?

SINTEF

Image Alignment Algorithm

Given images A and B

- 1. Compute image features for A and B
- 2. Match features between A and B
- 3. Compute homography between A and B using least squares on set of matches

What could go wrong?

(1) SINTEF

Advantages of local features

Locality

- features are local, so robust to occlusion and clutter

Quantity

- hundreds or thousands in a single image

Distinctiveness:

- can differentiate a large database of objects

Efficiency

- real-time performance achievable

Local measures of uniqueness Suppose we only consider a small window of pixels - What defines whether a feature is a good or bad candidate? Technology for a better society

Local measure of feature uniqueness

- How does the window change when you shift it?
- Shifting the window in any direction causes a big change

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Harris corner detection: the math

Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD "error" E(u,v):

$$E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^{2}$$

Technology for a better society

Small motion assumption

Taylor Series expansion of *I*:

$$I(x+u,y+v)=I(x,y)+\frac{\partial I}{\partial x}u+\frac{\partial I}{\partial y}v+$$
higher order terms

If the motion (u,v) is small, then first order approximation is good

$$I(x+u,y+v) \approx I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x,y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

shorthand: $I_x = \frac{\partial I}{\partial x}$

Plugging this into the formula on the previous slide...

Corner detection: the math

Consider shifting the window W by (u,v)

• define an SSD "error" E(u,v):

$$E(u, v) = \sum_{\substack{(x,y) \in W \\ (x,y) \in W}} [I(x+u, y+v) - I(x,y)]^{2}$$

$$\approx \sum_{\substack{(x,y) \in W \\ (x,y) \in W}} [I(x,y) + I_{x}u + I_{y}v - I(x,y)]^{2}$$

Technology for a better society

Corner detection: the math

Consider shifting the window W by (u,v)

• define an SSD "error" *E(u,v)*:

$$E(u, v) \approx \sum_{(x,y) \in W} [I_x u + I_y v]^2$$

 $\approx Au^2 + 2Buv + Cv^2$

$$A = \sum_{(x,y)\in W} I_x^2$$
 $B = \sum_{(x,y)\in W} I_x I_y$ $C = \sum_{(x,y)\in W} I_y^2$

• Thus, E(u,v) is locally approximated as a quadratic error function

$$E(u,v) \approx \left[\begin{array}{ccc} u & v \end{array}\right] \left[\begin{array}{ccc} A & B \\ B & C \end{array}\right] \left[\begin{array}{c} u \\ v \end{array}\right]$$

$$H$$

$$A = \sum_{(x,y) \in W} I_x^2 \\ B = \sum_{(x,y) \in W} I_x I_y \\ C = \sum_{(x,y) \in W} I_y^2 \\ \text{Vertical edge: } I_y = 0$$

$$\text{Vertical edge: } I_y = 0$$

$$E(u,v) \approx \left[\begin{array}{cc} u & v \end{array}\right] \left[\begin{array}{cc} A & B \\ B & C \end{array}\right] \left[\begin{array}{c} u \\ v \end{array}\right]$$

$$H = \lambda_{\max} x_{\max}$$

$$H = \lambda_{\min} x_{\min}$$

Eigenvalues and eigenvectors of H

- Define shift directions with the smallest and largest change in error
- x_{max} = direction of largest increase in E
- λ_{max} = amount of increase in direction x_{max}
- x_{min} = direction of smallest increase in E
- λ_{min} = amount of increase in direction x_{min}

Technology for a better society

Corner detection: the math

How are λ_{max} , x_{max} , λ_{min} and x_{min} relevant for feature detection?

· What's our feature scoring function?

Want E(u,v) to be large for small shifts in all directions

- the minimum of E(u,v) should be large, over all unit vectors $[u \ v]$
- this minimum is given by the smaller eigenvalue (λ_{min}) of H

(1) SINTEF

The Harris operator

 λ_{min} is a variant of the "Harris operator" for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
$$= \frac{determinant(H)}{trace(H)}$$

- The *trace* is the sum of the diagonals, i.e., $trace(H) = h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- · Lots of other detectors, this is one of the most popular

Weighting the derivatives

• In practice, using a simple window W doesn't work too well

$$H = \sum_{(x,y) \in W} \left[\begin{array}{cc} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{array} \right]$$

• Instead, we'll weight each derivative value based on its distance from the center pixel

$$H = \sum_{(x,y)\in W} w_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

SINTEF

Technology for a better society

Harris Detector: Invariance Properties

Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response is invariant to image rotation

(1) SINTEF

Scale invariant detection

Suppose you're looking for corners

Key idea: find scale that gives local maximum of f

- in both position and scale
- One definition of f: the Harris operator

Technology for a better society

Automatic Scale Selection

$$f(I_{i_1...i_m}(x,\sigma)) = f(I_{i_1...i_m}(x',\sigma'))$$

Same operator responses if the patch contains the same image up to scale factor. How to find corresponding patch sizes?

(1) SINTEF

Implementation

• Instead of computing f for larger and larger windows, we can implement using a fixed window size with a Gaussian pyramid

(sometimes need to create inbetween levels, e.g. a ¾-size image)

(1) SINTEF

Technology for a better society

Another common definition of f

• The Laplacian of Gaussian (LoG)

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

(very similar to a Difference of Gaussians (DoG) – i.e. a Gaussian minus a slightly smaller Gaussian)

Characteristic scale

• We define the characteristic scale as the scale that produces peak of Laplacian response

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> *International Journal of Computer Vision* **30** (2): pp 77--116.

Technology for a better society

Scale-space blob detector: Example

(1) SINTEF

- 1. Take a 16 x16 window around interest point (i.e., at the scale detected).
- 2. Divide into a 4x4 grid of cells.
- 3. Compute histogram of image gradients in each cell (8 bins each).

16 histograms x 8 orientations = 128 features

Keypoint descriptor

Technology for a better society

SIFT Computation - Steps

- (1) Scale-space extrema detection
 - Extract scale and rotation invariant interest points (i.e., keypoints).
- (2) Keypoint localization
 - Determine location and scale for each interest point.
 - Eliminate "weak" keypoints
- (3) Orientation assignment
 - Assign one or more orientations to each keypoint.
- (4) Keypoint descriptor
 - Use local image gradients at the selected scale.

D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, 60(2):91-110, 2004.

Cited 13629 times (as of 17/4/2012)

Scale-space Extrema Detection

- Extract local extrema (i.e., minima or maxima) in DoG pyramid.
 - -Compare each point to its 8 neighbors at the same level, 9 neighbors in the level above, and 9 neighbors in the level below (i.e., 26 total).

SINTEF

Technology for a better society

Keypoint Localization

 Determine the location and scale of keypoints to sub-pixel and sub-scale accuracy by fitting a 3D quadratic polynomial:

$$X_i = (x_i, y_i, \sigma_i)$$
 keypoint location

$$\Delta X = (x - x_i, y - y_i, \sigma - \sigma_i)$$
 offset

$$X_i \leftarrow X_i + \Delta X \quad \text{ sub-pixel, sub-scale } \\ \text{Estimated location}$$

Substantial improvement to matching and stability!

Keypoint Localization

• Use Taylor expansion to locally approximate $D(x,y,\sigma)$ (i.e., DoG function) and estimate Δx :

$$D(\Delta X) = D(X_i) + \frac{\partial D^T(X_i)}{\partial X} \Delta X + \frac{1}{2} \Delta X^T \frac{\partial^2 D(X_i)}{\partial X^2} \Delta X$$

• Find the extrema of $D(\Delta X)$:

$$\frac{\partial D(X_i)}{\partial X} + \frac{\partial^2 D(X_i)}{\partial X^2} \Delta X = 0$$

(1) SINTER

Technology for a better society

Keypoint Localization

$$\frac{\partial^2 D(X_i)}{\partial X^2} \Delta X = -\frac{\partial D(X_i)}{\partial X} \quad \Rightarrow \quad \Delta X = -\frac{\partial^2 D^{-1}(X_i)}{\partial X^2} \frac{\partial D(X_i)}{\partial X}$$

• ΔX can be computed by solving a 3x3 linear system:

$$\begin{bmatrix} \frac{\partial^2 D}{\partial \sigma^2} & \frac{\partial^2 D}{\partial \sigma y} & \frac{\partial^2 D}{\partial \sigma x} \\ \frac{\partial^2 D}{\partial \sigma y} & \frac{\partial^2 D}{\partial y^2} & \frac{\partial^2 D}{\partial yx} \\ \frac{\partial^2 D}{\partial \sigma x} & \frac{\partial^2 D}{\partial yx} & \frac{\partial^2 D}{\partial x^2} \end{bmatrix} \begin{bmatrix} \Delta \sigma \\ \Delta y \\ \Delta x \end{bmatrix} = - \begin{bmatrix} \frac{\partial D}{\partial \sigma} \\ \frac{\partial D}{\partial y} \\ \frac{\partial D}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial D}{\partial \sigma} = \frac{D_{k+1}^{i,j} - D_{k-1}^{i,j}}{2} & \text{use finite} \\ \frac{\partial^2 D}{\partial \sigma^2} = \frac{D_{k-1}^{i,j} - 2D_{k}^{i,j} + D_{k+1}^{i,j}}{1} & \text{differences:} \\ \frac{\partial D}{\partial \sigma} = \frac{D_{k-1}^{i,j} - 2D_{k}^{i,j} + D_{k+1}^{i,j}}{1} & \frac{\partial^2 D}{\partial \sigma^2} = \frac{D_{k+1}^{i,j} - D_{k+1}^{i,j} - D_{k+1}^{i,j}}{1} \\ \frac{\partial D}{\partial \sigma} = \frac{D_{k+1}^{i,j} - D_{k+1}^{i,j} - D_{k+1}^{i,j} - D_{k+1}^{i,j}}{1} & \frac{\partial^2 D}{\partial \sigma^2} = \frac{D_{k+1}^{i,j} - D_{k+1}^{i,j} - D_{k+1}^{i,j}}{1} \\ \frac{\partial D}{\partial \sigma} = \frac{D_{k+1}^{i,j} - D_{k+1}^{i,j} - D_{k+1}^{i,j}}{1} & \frac{\partial^2 D}{\partial \sigma^2} = \frac{D_{k+1}^{i,j} - D_{k+1}^{i,j}}{1} & \frac{\partial^2 D}{\partial \sigma^2} = \frac{D_{k+1}^{i,j} - D_{k+1}^{i,j}}{1} \\ \frac{\partial D}{\partial \sigma} = \frac{D_{k+1}^{i,j} - D_{k+1}^{i,j}}{1} & \frac{\partial D}{\partial \sigma^2} = \frac{D_{k+1}^{i,j} - D_{k+1}^{i,j}}{1} & \frac{\partial D}{\partial \sigma^2} = \frac{D_{k+1}^{i,j} - D_{k+1}^{i,j}}{1} \\ \frac{\partial D}{\partial \sigma} = \frac{D_{k+1}^{i,j} - D_{k+1}^{i,j}}{1} & \frac{\partial D}{\partial \sigma^2} & \frac{\partial D}{\partial \sigma$$

If $\Delta X > 0.5$ in any dimension, repeat.

(1) SINTEF

Keypoint Localization

- Reject keypoints having low contrast.
 - i.e., sensitive to noise

If $|D(X_i + \Delta X)| < 0.03$ reject keypoint – i.e., assumes that image values have been normalized in [0,1]

Technology for a better society

Keypoint Localization

- Reject points lying on edges (or being close to edges)
- Harris uses the auto-correlation matrix:

$$A_{W}(x,y) = \sum_{x \in W, y \in W} \begin{bmatrix} f_{x}^{2} & f_{x}f_{y} \\ f_{x}f_{y} & f_{y}^{2} \end{bmatrix}$$

$$R(A_W) = det(A_W) - \alpha trace^2(A_W)$$

or
$$R(A_W) = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$

SINTEF

Keypoint Localization

- SIFT uses the Hessian matrix (for efficiency).
 - i.e., Hessian encodes principal curvatures

$$\mathbf{H} = \left[\begin{array}{cc} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{array} \right] \quad \begin{array}{l} \alpha: \text{ largest eigenvalue } (\lambda_{\max}) \\ \beta: \text{ smallest eigenvalue } (\lambda_{\min}) \\ \text{ (proportional to principal curvatures)} \end{array}$$

$$\operatorname{Tr}(\mathbf{H}) = D_{xx} + D_{yy} = \alpha + \beta,$$

$$\operatorname{Det}(\mathbf{H}) = D_{xx}D_{yy} - (D_{xy})^2 = \alpha\beta. \quad \Longrightarrow \quad \frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(r\beta + \beta)^2}{r\beta^2} = \frac{(r+1)^2}{r},$$

$$(\mathbf{r} = \alpha/\beta)$$

Reject keypoint if:
$$\frac{\text{Tr}(\mathbf{H})^2}{\text{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}$$
 (SIFT uses $r = 10$)

SINTEF

Technology for a better society

Keypoint Localization

- (**a)** 233x189 image
- (b) 832 DoG extrema
- (c) 729 left after low contrast threshold
- (d) 536 left after testing ratio based on Hessian

SINTEF

Orientation Assignment

• Create histogram of gradient directions, within a region around the keypoint, at selected scale:

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = a \tan 2((L(x,y+1) - L(x,y-1)) / (L(x+1,y) - L(x-1,y)))$$

• Histogram entries are weighted by (i) gradient magnitude and (ii) a Gaussian function with σ equal to 1.5 times the scale of the keypoint.

Technology for a better society

36 bins (i.e., 10° per bin)

Orientation Assignment

 Assign canonical orientation at peak of smoothed histogram (fit parabola to better localize peak).

- In case of peaks within 80% of highest peak, multiple orientations assigned to keypoints.
 - About 15% of keypoints has multiple orientations assigned.
 - Significantly improves stability of matching.

SINTEF

Keypoint Descriptor • Each histogram entry is weighted by (i) gradient magnitude and (ii) a Gaussian function with σ equal to 0.5 times the width of the descriptor window.

Properties of SIFT Extraordinarily robust matching technique

- Can handle changes in viewpoint
- - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available

NASA Mars Rover images with SIFT feature matches

SINTEF

Local Descriptors: SURF

Fast approximation of SIFT idea

Efficient computation by 2D box filters & integral images
⇒ 6 times faster than SIFT
Equivalent quality for object identification

GPU implementation available

Feature extraction @ 100Hz (detector + descriptor, 640 \times 480 img) http://www.vision.ee.ethz.ch/ \sim surf

[Bay, ECCV'06], [Cornelis, CVGPU'08]

Technology for a better society

Main points of this lecture

- Moving the same camera restricts the geometry allowing inference about 3D Potential uses range from mosaicing to egomotion estimation
 - In principle the same mechanism that human depth perception is based on
- Stereo / multiview stereo. You should be able to describe the concepts.
 - Remember the RANSAC algorithm and understand why it works
 - Simple, fast algorithm applicable in very many tasks
 - Important part of your toolbox
- Grasp the concept of scale-invariant features
 - Example: SIFT algorithm (location and description)
- Geometry and image transforms is out of scope for this course
 - But part of INF 2310 so you know all this!

Bonus slides SINTEF Technology for a better society 117

Related topic: Drift

- add another copy of first image at the end
- this gives a constraint: $y_n = y_1$ there are a bunch of ways to solve this problem
 - add displacement of $(y_1 y_n)/(n 1)$ to each image after the
 - compute a global warp: y' = y + ax
 - run a big optimization problem, incorporating this constraint
 - best solution, but more complicated

Technology for a better society

Global optimization

- Minimize a global energy function:
 - What are the variables?
 - The translation $t_{\rm j}$ = $(x_{\rm j},\,y_{\rm j})$ for each image $l_{\rm j}$
 - What is the objective function?
 - We have a set of matched features $\rho_{\mathbf{i},\mathbf{j}}$ = ($u_{\mathbf{i},\mathbf{j}},v_{\mathbf{i},\mathbf{j}}$)
 - We'll call these tracks
 - For each point match $(\rho_{i,j},\rho_{i,j+1})$: $\rho_{i,j+1}-\rho_{i,j}=t_{j+1}-t_j$

Global optimization

$$\begin{bmatrix} -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\ & & & & & & & & \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \\ x_3 \\ y_3 \\ x_4 \\ y_4 \end{bmatrix} = \begin{bmatrix} u_{1,2} - u_{1,1} \\ v_{1,2} - v_{1,1} \\ \vdots \\ v_{4,1} - v_{4,4} \end{bmatrix}$$

$$\vdots$$

$$v_{4,1} - v_{4,4}$$

$$\vdots$$

$$v_{4,1} - v_{4,4}$$

$$\vdots$$

$$v_{4,1} - v_{4,4}$$

Defines a least squares problem: minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$

- Solution: $\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$
- Problem: there is no unique solution for $\hat{\mathbf{X}}$! (det($\mathbf{A}^T \mathbf{A}$) = 0)
- We can add a global offset to a solution $\boldsymbol{\hat{x}}$ and get the same error

