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What is tracking?
= Definition: using image measurements and a predictive dynamic
model to consistently estimate the state(s) X: of one or more

object(s) over the discrete time steps corresponding to video
frames.
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What is tracking?

= ltis better to do tracking +efficient, restricts search space
Maintain an estimate of X over + smoothes noisy measurements
time, predict the future location -requires knowledge about object behavior
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Outline

Introduction to the g

 Approaches & assuptons
- Trecking appictions

tracking problem e,
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What is tracking?

= Why not just do detection? - inefficient
M Estimate the state X at each - data association problem
time step
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=
Tracking assumptions

= Smooth camera
B Noinstant transitions between viewpoints
W Any camera pose/parameter changes are gradual

= Object motion can be modeled
® Linear models
® Non-linear mod

= Likelihood of object presence at a location in the image can be modeled
W Typically uses local image information
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Fundamentals

« Tracking task:

= In the simplest form, tracking can be defined as the problem of estimating the trajectory of
an object in the image plane as it moves around a scene. In other words, a tracker assigns
consistent abels to the tracked objects in different frames of a video. Additionally,
depending on the tracking domain, a tracker can also provide object-centric information,
such as orientation, ares, or shape of an object.
= Two subtasks:
+ Build some model of what you want to track

+ Use what you know about where the object was in the previous frame(s) to make predictions about
the current frame and restrict the search

. Repeat the two subtasks, possibly updating the model
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=
Approaches to tracking

= Sequential = Batch Processing

® (recursive, online) (offiine)
- Expensive — not real-time”
+ considers all information
+Can correct past errors

W +Inexpensive — real-time
M - no future information
W - cannot revisit past errors
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Approaches to tracking
= Non-probabilistic = Probabilistic
B +quick convergence® + flexible, principled

m +efficient + multi-modal
B - stuck in local minima - slower
M - does not model multiple - interpretation

objects
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Fundamentals

« Tracking objects can be complex due to:

= loss of information caused by projection of 3D world on 2D image
* noise in images

complex object shapes / motion

nonrigid or articulated nature of objects

partial and full object occlusions

scene illumination changes

real-time processing requirements

Simplify tracking by imposing constraints:

= Almost all tracking algorithms assume that the object motion is smooth with no abrupt
changes

= The object motion is assumed ta be of constant velocity

Prior knowledge about the number and the size of objects, or the object appearance

and shape
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A%proaches to tracking
= Parallel trackers = Joint state
B several single-object trackers
W computationally less expensive
W how to handle interaction, cross-
overs?

single multi-object representation
computationally expensive
principled interaction models
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Tracking applications
-k
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Tracking applications Tracking Applications
= Tracking is an essential step in many computer vision based applications - SDUI’tS
. Activity Behavior
P . Recognition Analysis +
Feature Tracking S Event Soziall
Extraction o o
Recognition Models
Prithwijit Guha, Amitabha Mukerjee and K. S. Venkatesh, “0::(c (- covery: Appearance + Behavior = Agent, Computer Vision,
- P.Nillius, J. Sullivan, S. Carlsson, /7 -Toroel Tracking - Lokl
Groptics ond mage Processing 4336 516-527, 2007 Computer Vision and Pattern ﬂswqm‘twn {’:‘v‘un}', zaagj '
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Tracking Applications Tracking Applications

= Biomed &
Microscopy

= Surveillance

K. Smith, P. Quelhas, and D. Gatica-Perez, Detecting Abandoned Luggage ltems in a Public Soace, Performance Evaluation of Tracking and
Surveillance (PETS) Workshop at CVPR, New York, NY, June 18 2006
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K. Smith, A. Carleton, and V. Lepetit, Gereral C MultipleT

raints for Bat
Vision and Pattern Recognition (CVPR), Anchorage, AK, June 2008

Tracking Applied to Large-Scle Videomicroscopy, Computer

@ SINTEF Technology for a better society

What is the state of the art? Tracking Challenges

= appearance change
= occlusion

= distraction

= {llumination change
= difficult mation

= multiple objects

= scale change

= efficient solution

= Despite being classic computer vision problem, tracking is largely unsolved
W Some limited successes
B No general-purpose tracker
B No standard data corpus for comparison
B No standard evaluation methodology
B (hallenging problems remain

Ruei-Sung Lin, David Ross, Jangwoo Lim, Ming-Hsuan Yang, Adaptive discriminative generative model and its
Agplications Neural Information Processing Systems Conference (NIPS), 2004
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Tracking Challenges

appearance change
occlusion
distraction
illumination change
difficult motion
multiple objects
scale change
efficient solution

/

Amit Adam, Ehud Riviin and llan Shimshoni, Fobust Fraoments-based Tracking using the Intearal Histogram (oo
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2006
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Tracking Challenges

appearance change
occlusion

distraction

illumination change
difficult motion
multiple objects
scale change
efficient solution

Ruei-Sung Lin, David Ross, Jongwoo Lim, Ming-Hsuan Yang, Adaptive discriminative generative model and ts
Agplications Neura! Information Processing Systems Conference (NIPS), 2004
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Tracking Challenges

appearance change
acclusion
distraction
illumination change
difficult motion
multiple objects
scale change
efficient solution

Saad Ali and Mubarak Shah, Floor Fields for Tracking in High Density Crowd Scenes, European Conference on
Computer Vision (ECCV), 2008,
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Tracking Challenges

appearance change
occlusion
distraction
illumination change
difficult motion
multiple objects
scale change
efficient solution

Michael Isard and Andrew Blake C0NOENSATIC ditional density oropagation for visual tracking
International Journal of Computer Vision (LUCV), 29,1, 5--28, (1998)
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Michael Isard and Andrew Blake C0)0ENSATION
International Journal of Computer Vision (LICV), 29, 1,528, (1998)

Tracking Challenges

appearance change
occlusion

distraction

illumination change
difficult motion
multiple objects
scale change
efficient solution

conditional density propagation for visual tracking
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Tracking Challenges

appearance change
occlusion
distraction
illumination change
difficult motion
multiple objects
scale change
efficient solution

‘Shawn Lankton, James Malcolm, Arie Nakhmani, and Allen Tannenbaum. Tracking Through Changes in Scale
Proceedings of International Conference on Image Processing (CIP), 2008
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Tracking Challenges

appearance change

?;(x) - uniform distribution
x

= occlusion
LW = distraction
T & ke = illumination change

Qo6 Q5
p(x) - uniform distribution
.

g
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difficult motion

multiple objects

scale change

finding efficient solution

Object Representation

Object representation = Shape + Appearance

Shape representations:

@ SINTEF
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Cutline
-probabilistic
methods

oy
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Outline

e

Tracking

preliminaries

@ SINTEF Technology for a better society

Object Tracking

IV |AA

(b) (¢)

Al

= (a) Point Tracking. Objects detected in consecutive frames are represented by points,
and a point matching is done. External mechanism detect the objects in every frame.

= (b) Kernel Tracking. Kernel = object shape and appearance. E.g. kernel = a rectangular
template or an elliptical shape with an associated histogram. Objects are tracked by
computing the motion (parametric transformation such as translation, rotation, and
affine) of the kernel in consecutive frames.

= (c)+(d) Silhouette Tracking. Such methads use the information encoded inside the
object region (sppearance density and shape madels). Given the object madels,
silhouettes are tracked by either shape matching (c) or contour evolution (d). The latter
one can be considered as object segmentation applied in the temporal domain using
the priors generated from the previous frames. (See lecture on active contours)
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Mean shift tracking

The mean-shift algorithm is an
efficient approach to tracking objects
by appearance
Ideally, we want an indicator function
that retunrns 7 for pixels on the object
we are tracking and O for all other
pixels.
Nat possible - Instead we compute
likelihood maps where the value at a
pixel is proportional to the likelihood
that the pixel comes from the object
we are tracking.
Not limited to only color:

« edge orientations

« Texture

« motion D. Comaniciy, V. Ramesh, and P. Meer, Kernel-

Handles occlusions and camouflage
poorly

based object tracking. |EEE Trans. Patt. Analy.
Mach. Intell. 25, 564-575, 2003
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Mean shift tracking

OpenCV's mean shift tracker
implementation uses an algorithm called
Camshift. Camshift consists of four steps:

Create a color histogram to represent
the object

Calculate 3 "object probability’ for
each pixel in the incoming video
frames

Shift the location of the kernel in each
video frame

4. Calculate the size and angle of the
ellipse (adapt kernel)
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(Calculate object probability

The histogram is in Camshift created
only once, at the start of tracking.

Afterwards, it's used to assign a”
object probability” value to each
image pixel in the video frames that
follow.

The probability that a pixel selected
randomly from the initial region would
fall into the rightmost bin is 45%, and
soon.

The hue value for each pixel is thus
used to assign a estimated object
probability to the pixel.
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Camshift demo

+ ‘Likelihood" based on color is noisy and is also
quantized hard in the example implementation
+ Two (three) parameters in Camshift for tweaking
the noise sensitivity based on S and V in the
HSV color space.
Vmin and Vmax : intensity threshalds for colors,
low intensity colors are noisy in Hue, and high
intensity colors are "too close” to white
— Smin - saturation threshold. Colors that have low
saturation could fit any Hue.
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Color histogram

Camshift represents the object it's tracking as a histogram of color values in the HSV
color model.

CV book Face
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Shift to a new location

Region of

interest.

Centerof
mass

Let pixels form & uniform grid of data points,each ~ ®
with a weight (pixel value) proportional to the .
"likelihood" that the pixel is not on the objectwe ~ ®
want to track. .

"Shifts" the location estimate centered over the .
area with the highest concentration of bright .
pixels in the object probability image.

Vector from previous location bycomputing the
center of gravity of the probability values within a
kernel.

_ Sa K@x) wa) (ax)
Ta K(a-x) w()

Ax
Running mean-shift with kernel K on a weight

image w is equivalent to performing gradient

ascent in a (virtual) image formed by convolving w

with some shadow kernel H
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Lucas Kanade Tracking

Traditional Lucas-Kanade is typically run on small, corner-like features (e.g. 5x5) to
compute optical flow.

+ Observation: There's no reason we can't use the same approach on a larger window
around the object being tracked.
—  Summarize tracked features

— Match templates

Sparse
motion flow
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Lucas-Kanade

+ Originally intended for fast image (0,
registration

*+ Selects features based on texture:

— Coefficient matrix based on covariance of
image gradients within a window around
the proposed feature

— Eigenvalues of coefficient matrix must be
large and similarly valued

+ Tracks features based on error:
— Error between image intensities X
— L, Norm (Sum of Squares) used to define
error

Small changes between frames assumed
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One LK-tracking example; TLD tracker

Z.Kalal, K. Mikolajczyk, and J. Matas, "Forward-Backward Error: Automatic Detection of
Tracking Failures,” International Conference on Pattern Recognition, 2010, pp. 23-26.

«+  Continously learns appearance by recalculating a classifier

TRACKER: Median Shift DETECTOR: randomized forest, 2bitBP features

r3 ) )
ﬁ 7 Scanningwindow  Features Posteriors  Object
I! X
Background
SPArse 1 ect displacement €
motion flow
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Utility of Paint Features

Advantages:

0 highly repeatable and extensible (work for a variety of images)
0 efficient to compute (real time implementations available)

o local methads for pracessing (tracking through multiple frames)

S B
tracking multiple point features = sparse optical flow
sparse point feature tracks yield the image motion
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Demo LK-based tracking

«  Shi-Tomasi feature tracker

= Continously learning feature tracker

LK tracking: reliability estimates

Selection of reliable points: median is estimated based
on 50% of the most reliable points, reliability estimated
using combined forward-backward error.

Tracking failure: median residual > threshold.

forward-backward
error

@ SINTEF
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Recall: Blob merge/split

*  When two objects pass close to each other, they are detected as a single blob.
+ Often, one object will become occluded by the other one. One of the challenging problems is
to maintain correct labeling of each object after they split again.

merge occlusion

occlusion

@ SINTEF
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Data association

More generally, we seek to match a set of blobs across frames, to maintain continuity of
identity and generate trajectaries.

—

==
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Data Association Scenarios

Intuition: predict next position along each track

[}
Track 1 A\x\ "D__—_D—_é—c‘ 2
vy .
PA s a4

’
/!

’
Track2 | New observations
0o--
How to determine which observations
to add to which track?
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Track matching

But some matches are fairly unlikely, still

A 0; .
Track 1 \‘ ,—‘n_— - d.

9

‘\A__*___A'

/,
,
g
Track2 D' New observations
o--
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Data Association

More generally, we seek to match a set of blobs across frames,
to maintain continuity of identity and generate trajectories.

A [ ]

\ ol e @
Track 1 \ Pid
A /D :
i[ A ——A [ ]
, ——A °
J/
Track 2 ‘l:[' New observations
0O---
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Intuition: predict next position along each track + match should be close to predicted
position

Track 1
Treck2 1 New observations
0--
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Gating

A method for pruning matches that are geometrically unlikely from the start.
Allows us to decompose matching into smaller subproblems.
Kalman filter - next lecture

Gating
[ ] region 1
A ?
\A
Track 1
~ *
=A-
/lj ——-A__ R ?
// e
’
Track2 _ o New observations
o--
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Outline
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Recursive Bayesian Filtering

= Key idea 1. PDFs represent our belief as to the state of the
object

= Key idea 2. recursive cycle
= Predict from motion model

= Correct the prediction
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= Measurement from image D

]

Tracking ingredients
= State Definition
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Recursive Bayesian filtering

= How is it characterized?
M Sequential
M Parallel trackers OR joint modeling of multiple objects
M Probabilistic

B Popular examples
M Kalman filter
M Particle filter
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Recursive Bayesian Filtering

= State definition
Represent the object

= Dynamic model
Predict the next state given

current state
P ]
= Inference method )
Solution estimation K v
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R — Y - = Observation model
L S Loy o Take measurements from the
RS - image

]

State definition

= Describes properties of the tracked object(s) at an instant in time
= Defines solution space

@ SINTEF Technology for a better society




[
State definition
= Decomposed for time step t, X can parameterize the object in
many ways, often via:
B [ocation
M velocity
W size [l ] -
® shape : ] | :
u identity i [ H
B switching model 1 : [ 1
xex 7 ] ' !
‘ s ! 1 !
x, =(x,) S 0 : 0
x, =Gy s/ 1L O@ :
x, = {x,x7} I
X
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State definition

= Bounding box
W position
B height

W aspect
B velocity

X, =(x,»)
X, =(x,y,h,a)
X, = (x,y,%,7,h,a)

er, International Conference on Computer Vision (ICCV), 2003

M. Bmunslzm . Reichlin, B.Leibe, E Koller-Meier L Van ool 20515t Irackn b etect on using s Detector
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State definition

= Active contour
W b-splines

B control points
B spline length
B A basis functions

X, =(X(9).¥(s))
X(s)=H(s)X,0=ss=N
Y(s)=H(s)Y
X={x'x',...,x"}
Y=yt

Michael Isard and Andrew Blke C1\ N -- conditional density propagat visual tracking
International Journal nV[nmpu[Eersmrv(U[\/) 29,1,5-28, [wqa]
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State definition
= Object defined by a point

W position
W velocity
W acceleration

X, =(x,)
X, = (x,y,w,h)
X, = (x,,%,7,w,h)

Saad Ali and Mubarak Shah, Floor Fields for Tracking in High Density Crowd Scenes, European Conference on
Computer Vision (ECCV), 2008
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State definition

m Ellipse
M ocation
B eccentricity
W major axis

x, =(x,y,m,e)
=(x,y,a,b)

Vuan L, Chang Huang, Ram Nevatia | brid
Computer Vision and Pattern Recognition (VPR e 2009
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State definition
= Articulated & Part-based Madels

B setof vertices
M |ocations

B scales

B constraints

X, ={v' v, 0"

vi=(x, s

0 People-Detection-by-Tracking, Computer Vision

M. Andriluk, S. Roth, B. Schiele, etecti
and Pattern Recognition (CVPROB) Anmurage USA, June 2008
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Tracking ingredients

= (Observation Model

v!
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Observation madel
= Modeling skin color
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Observation model
= Background/foreground silhouette modeling

|
08 L‘
_ V= ——
8
'g 0 mm i = =
&
5
E") 0.4
S mmmmmmmiao
foreground  tracker intersection 02
0 02 0.4 05
Foreground Recall
K. Smith, D. Gatica-Perez, and JM. Odobez, L= 1o Particles to Track Varuing Numbers of Dbjects, CVPR, June 2005
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Observation model
= Models the likelihood p(z, I, )thata state estimate x, gave rise to the

observed image data Z;

i “
@&m:

— AR

IR

@ SINTEF Technology for a better society

Observation model

= Sum of measurements taken from
lines perpendicular to a contour

Michael Isard and Andrew Blake ATION - conditional density propagation for visual tracking
International Journal of Computer Vision (JCV], 26, 1,528, (1998)
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Observation model
= Parts-based color model

HS+V histogri

P. Perez, C. Hue, J. Vermask, and M. Ganget. ,in ECCV, May 2002
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Observation model
= Detector confidence

B HOG based sliding
window detector

M.Brei i in, B. Leibe, E. Koller-Meier, L. Van Gool, Hobis: | Detectior
onfid: , International Conference on Computer Vision [\[(v) 2000
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Dynamic maodel
= (Current state is predicted from previous state

p(x,|x, )= N(Fx IS

x, ~N(Fx,

=12

1 2,; ) to obtain samples

W Autoregressive linear dynamic model

X, = tht—l W,

Predicted state Noise term
time ¢ wit ~/V(0,Qéz)

State transition Previous state
model time -/
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Dynamic maodel

= Nonlinear dynamic models
W Discrete state transitions

DIDDECLCCR
iiﬂiﬁﬁ ce

iﬁ?ﬁﬁ €

Transition probabilities

Discrete pose states - i
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Trackinn inaredients

= Dynamic Model
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Dynamic madel
= 1t order autoregressive
W models position & velocity

State X, X,
vector X 1 1
Y,
y | 1 1 -1
X, = ] = | . +W .
X t X
. 1 .
N Y i
F{
State transition Previous
model state
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Tracking ingredients

= Inference

DL FEPEEPL (s
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Recursive Bayesian filtering Recursive Bayesian filtering

= Use probability distributions to model the tracking problem
= Filtering equation:

p(x1Z) plz1x) [, p(x1x0) p(x,120),
[ [ [ [ | S

posterior likelihood or motion model or

) N W
posterior b A &\’/ :'\ = M
estimate observation model dynamic model estimated at t-1 L 4
= Definitions ; -
correc! . i
W Statefrom I totimer: X, ={Xl=~-~7x,,px,}‘ X/f neasure ﬁpmd"t
™ Observations from 1 totime:  Z, = {z K.,z .z }
' I & &y
p(xt|Zt O(p(lz|xt)j; Ip(xt|xr—])l (Xt—l ‘Zt—l)l
-1
I [
posterior likelihood motion model posterior at ¢-7

Technology for a better society
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Madeling the tracking problem

= Model the problem as a Hidden Markov Madel (HMM)
B Dependency — ———yjp

Recursive Bayesian filtering

Derivation setup

® Varisbles: hidden observed O = Notation

State from 0 to time ¢ X, = {xl Kox o, x,}
X; "L WX~ X, M X)L M Xp

Observations from 0 to time ¢ Z' = {ZI,K s zt_l’z[}
= Assumptions

. Assumptions Dynamics form a Markov chain p(x, | XH) = P(", |x,7,)
Dynamics form a Markav chain =~ p(x | X)) =p(x, %)
Independent observations  p(z,x.X,,.Z_,)=p(z|x,)

@ SINTEF

Independent observations p(zl Ix,X,.Z,, ) = P(Z, Ix,)

Technology for a better society @ SINTEF Technology for a better society

Recursive Bayesian filtering Useful probability relations
- = (Conditional probability P(ANB)=P(4,B) = P(4and B)
Derivation setup P4 By=LANE) P(AUB)=P(Aor B)
P(B)
starting from this relation P(B| 4) = P(;l(;\)B) ANB
XZ,)=p(X:2,X, .2,
p(X.2)=p( vZe) ® Bayes theorem l
derive the recursive Bayesian filtering equation P(A| B) = P(B|A)P(A) A B
. P(B)
P(x,12) = pla1x)f._p(s1%:)p(xa12.) ™ Margina probabilty

P(4) = ZP(A, B)= ZP(A | B)P(B)

P(A4) =LP(A,B) =J; P(A|B)P(B)
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Probability distribution to model belief in object location

= Tracking faces in frame

@ SINTEF Technology for 3 better society

]

Representing the pasterior

1 ifx =
= Apoint (direc) p(x,\Zl)={0 othe’rwife
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Representing the pasterior

= Mixture of Gaussians {(/41,2] ),(,LI,Z,ZZ),K }

ey

[} \

o © ]

/ ] \ /

[ Vi N 4

\-ﬂ'

p(%,12,) % 3 ——exp (5, ~ ) (5, 10)
1) B e - 5 )2 5

Technology for a better society
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Probability distribution to model belief in object location
W Posterior or target distribution - models belief as to the state of the system given the
observations up to ¢

Peak 1

p(x12)

Peak 2
Peak 3
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Representing the posterior

= Gaussian

p(x12)= N(y,2)=mexp(—%(x, W= (x, -.M))
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Representing the posterior

= Set of discrete samples (particles)

{xf"),n =1K ,N}

Technology for a better society
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Representing the pasterior

N

= Set of weighted samples (particles) {x,(") N W,(")}

n=1

W e[0,1]

Ew’(m -1
Y
-9

S

N
p(312)= 3ot o3 -57)
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Recursive bayesian filtering

= Kalman filter = Particle filter
exact solution approximate solution

= Continuous state space Continuous, discrete, or mixed state space
B Linear dynamics
B Gaussian observation density

Arbitrary dynamics
Arbitrary observation density

o \ ik
e o st GG
| v ean

o /

W m m w w w % we w e o5 = = & s 5 %
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Kalman filter

= Published in 1960
Kalman, R. E. 1960. A New Approach to Linear Filtering and Prediction Problems,”
Transaction of the ASME—Journal of Basic Engineering, pp. 35-45 (March 1960).

= Used for many problems
= Guidance

Navigation
Autopilots

Radar

Satellite

Wesather forecasting
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Recursive Bayesian Filtering
B Model belief about the current state X given past and present observed dats Z,,,

propseaf seed

Kalman filter  exact solution proposalgh
[1] Kalman, RE. A new approach to linear filtering and
prediction problems. ASME, Journal of Basic Engineering,
1960.

SIR particle filter discrete approx. 3|

[2]M.lsard and A. Blake. Condensation, International
Journal of Computer Vision, 1998

acceptance test
test

MCMC particle filter discrete approx.
[31Z.Khan, T. Balch, and F. Delloert, An MCMC-based particle
filter for trecking multiple interacting targets, ECCV, 2004.

X
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MCMCvs SIR

M task: track 1D targets using SIR PF & MCMC PF

Estmaton Eror (RMSE)
Estimation Eror (RMSE)

10 10* 0° 10° 10" 0
‘Computations Meastred in CPU Time (s)

10° 107 10
‘Computations Measured in CPU Time (s)

10 targets 50 targets
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Kalman filter: Gaussians!

= inbayesian filtering terms
W Posterior

P(Xz |Zt)=N(ﬁt\t’I)t|t)

® motion model

p(xr | X, ) = N(thz—lﬂQt)

™ observation model

p(zl ‘Xt)=N(HlXI’Rl)

@ SINTEF Technology for a better society
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Probability density propagation

= Gaussian — Kalman filter

4/15/13

@ SINTEF Technology for 3 better society

Kalman filter

= State vector

Xo0» Pom
= Measurement VD

@ SINTEF Technology for a better society

Kalman filter

= Prediction from the motion madel

P(Xt | XH) = N(tht—l’Qt)
= Update the mean

~ ~ X, P
— fle=1> L ele-1
Xt\t—l - th

t=1jt-1

@ SINTEF Technology for 3 better society

Kalman filter
s ‘f\,
A\ o
Vo \" ‘\’ - 4
\\ , i -
- o8l
= Predict, measure, correct cycle
iteratively estimates the state at Xo0> Pﬂ\o % P
each time step fe=1>"tle=1
xr\ﬂP/\t Z,,R
S,

@ SINTEF Technology for a better society

Kalman filter

= Initigl state |
%o
X, = o
00 % P
o X5 Fop
Vs
L
L
P, 00 =

L

@ SINTEF Technology for a better society

Kalman filter
,—*\\/l)l\!) = FlPuu)FlT +Q,

= Prediction from the motion model

p(xt | X ) = N(thrfl’Qr )

= Update covariance

P =FKP FT +Qt—l xl\l*l’PI\ul

fle-1 [t

@ SINTEF Technology for a better society
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Kalman filter

= Prediction from the motion madel

Xt\t—l = tht—l\t—l

1 At

=R R

) VVRPE S|

@ SINTEF Technology for 3 better society

Kalman filter
, z,,R
8 rd
- Observatmhh/udet B
X
z, =
Yy
z,=HX, +v,
X
X
EE T I R A O | vy,
y. 0100) x
N
" y

z,,R

%)
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Kalman filter

= Compute the residual (innovation), 5.5,

predicted PN
measurement A
/

| 1
actual \ '\4

measurement uy
Y. =z,- Htxt\t—l

St = HrPr\/—IHzT * Rz

predicted
covariance

actual

)

z,R
¥,.S,

covariance
@ SINTEF Technology for 3 better society
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Kalman filter

= Receive 3 noisy measurement

X
z, =
y
= Observation model
p(zl \x[)=N(H[x”H, D

z,,R

0

=

@ SINTEF Technology for a better society

Kalman filter

= Observation model - how likely is the observation given the prediction?

p(z1x)=N(Hx, .R,)
z,R
¥.S,

@ SINTEF Technology for a better society

Kalman filter

= Correct the prediction using measurement
= Kalman gain, K- specifies how much the correction considers the prediction
Fop Py or the measurement 3.5,

TQ -1
Kr = Pr\r—lHt Sl
predicted
covariance

observation
model

residusl S
V.S,

covariance
@ SINTEF Technology for a better society
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Kalman filter

= Correct the prediction using measurement
X, =Xt Ky,
Xr\t = Xl\t—] +K/ (Z/ - HXW—I )

state

prediction residual
P, =(/-KH,)P,
X:\r > Pt\/
predicted residual
covariance covariance

@ SINTEF Technology for 3 better society

Kalman filter

Kalman filter smoothing of accelerometer measurements.

@ SINTEF Technology for a better society
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Kalman filter: dynamic models

= Without velocity X, = = Constant velocitymodel X, =

=eoRe R

— Estimate
----- Measurement

— Estimate
AR Measu

@ SINTEF Technology for 3 better society

4/15/13

Kalman filter

= Predict, measure, correct cycle XO\O’ PD\D X P
iteratively estimates the state at =12 " tle-1
each time step

Xt\z > Pr\r Zz ’ R
¥y..S,

@ SINTEF Technology for a better society

Kalman filter

-

Kalman filter tracking an aircraft. Kalman filter tracking an aircraft.

@ SINTEF Technology for a better society

Summary: Kalman filter

" Pros + = Cons -
= @aussian densities Restricted to Gaussian
easy to work with densities
= Simple updates, Unimodal distribution:

compact & efficient single hypothesis
= Well established Dynamic model
method restricted to linear,
continuous

@ SINTEF Technology for a better society
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Kalman limitations

o~ Prediction too far

from actual location
(

torecover
@ SINTEF

Technology for a better society

m

Particle filter

D.Klein, D. Schulz, S. Frintrop, and A. Cremers, Accorive Aeol-Time Video T
International Conference on Intelligent Robots and Systems (IROS), 2010

@ SINTEF Technology for a better society

113

Probability density propagation

= Gaussian densities — Kalman filter

@ SINTEF Technology for 3 better society
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Kalman limitations
= (Cannot use non-Gaussian observation models

M.Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, L. Van Gool,
20bust Tracking-by-Detection using a Detector Confidence Particle Filter, International Conference on Computer Vision (ICCV), 2009

@ SINTEF Technology for a better society

Particle filters

* Go by many names:
Sequential Monte Carlo Methods 2t
Sequential importance resampling (SIR)
Bootstrap filters

= Condensation trackers Ly
= Originally used for problems in 2}
= Statistics
= Fluid mechanics = = - 3 ' : :

ooern
= Statistical mechanics
= Signal processing
= Alot of tools already developed in the other disciplines
* Introduced to computer vision community by
Michael Isard and Andrew Blake, CONDENSATION -- Conditional Density Propagation
for Visual Tracking, International Journal of Computer Vision (1JCV), 29, 1, 5--28, (1998)

@ SINTEF Technology for a better society

Probability density propagation

= General densities — particle filter

@ SINTEF Technology for a better society
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Monte Carlo approximation

p(x)

@ SINTEF

® How can we represent an arbitrary probability density?

Some complicated PDF we'd like to represent

Technology for a better society

17

Particle approximation

= Target distribution

@ SINTEF

Technology for a better society
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Particle approximation

@ SINTEF

= Monte Carlo approx - added samples

Technology for a better society

4/15/13

116

Monte Carlo approximation

= Represent the PDF non-parametrically, as a set of (weighted) samples!

Some complicated PDF we'd like to represent

p(x)

—0-000QD0o0—o—0o@I )DO0——

Monte Carlo approximation
)
P~ 3w, 8(x-x,)

Technology for a better society
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Particle approximation

= Monte Carlo approximation - too few samples

=

-3 — K o 1 2 3
@ SINTEF Technology for a better society

SIR particle filter

5
E

prediction step
update stey | i %
e [ S
.

6o S-@@d63——

@ SINTEF Technology for a better society
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What is a particle?

= A"sample’ of the posterior
v -
+000@@ 000 —o-c0aGPB00

= state estimate

= weight

s =)
= Summing the particles

gives an approximation
to the target distribution

Plx12)= 3w ofx,~x!)
n=1

@ SINTEF Technology for 3 better society

SIR particle filter

Begin with weighted
samples from t-1

Resample: draw
samples according to
{w,

Drift: apply motion
model (no noise)

Diffuse: apply noise to
spread particles

[ 1wl

/1140]

AN A1
Wi

[
N&H

Measure: weights are
assigned by likelihood
response

Finish: density estimate
@ SINTEF Technology for a better society

I TL L] ll i

SIR particle filter
Begin with weighted
samples from t-1
Resample: draw
samples according to
{W'J}IFI:N

Drift: apply motion
model (no noise)

Diffuse: apply noise to
spread particles

Measure: weights are
assigned by likelihood

Sl

[ wul

|/AAN]L
|

response

Finish: density estimate

@ SINTEF Technology for 3 better society

CULILIHLTE L DY

4/15/13

What is a particle?

= Each particle contains a
* state estimate
= weight

P
st =(x,w')

B T T T

@ SINTEF Technology for a better society
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Probability density propagation

= Notice similarities to the familiar recursive pracess

@ SINTEF Technology for a better society

]
SIR particle filter

N
(312.)= 3 o, -x2.)

= Begin with weighted
samples from t-1

[ lwell [l
LA W
g

IR RARARINI N A A
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Previous estimate

= Receive posterior
estimate from previous
time step

@ SINTEF Technology for 3 better society

Resample

® N new samples are drawn
from the previous set with
replacement to prevent
degeneracy.

= Repeated samples occur by
design.

Weighted
sempling with
replacement

New sample set
is given uniform

X, l’ weights

@ SINTEF

Technology for a better society
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Degeneracy
= Failing to resample results in degeneracy.

* lteratively propagating the particles and assigning weights tends to
make a few samples dominate the rest

/ Distribution no longer

/ representative

@ SINTEF Technology for 3 better society
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SIR particle filter

= Resample: draw
samples according to
{w/—l } n=1:N

[ well

Iy
¥4 /MZ//H X\\X&XH
LJAMNL] A \

DTHUHETE T ll lll !

N new samples are
drawn from the previous
set with replacement.

New samples are
assigned uniform
weights.

@ SINTEF

130
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@ SINTEF
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Resample

® N new samples are drawn
from the previous set with
replacement to prevent
degeneracy.

" Repeated samples occur by
design.

Weighted
sempling with
replacement

New sample set
N is gwen uniform
I l’ weights

Technology for a better society

SIR particle filter: predict

* ey bl Ll
. ‘%/%%%H‘"&Nﬂ
SR IZAANLL A
I L]

!

CULILIHE T DD T

Drift: apply motion
model (no naise)

Diffuse: apply noise to
spread particles

Technology for a better society
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Mation model
= Apply the motion model p(x/|
x,.,) to every particle!
X, =Fx,_ +w
t -1 t
t t

linear motion noise

model
x/ 1 At XH
Yol 1 A |l Ve |y
X 1 X
3, LA
F,
w, ~ N(0.0,)

@ SINTEF Technology for 3 better society
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Observation model

= Obtain observation z for
each state estimate x,

@ SINTEF Technology for a better society
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Observation model

= Obtain observation z for each state estimate x,

LAB color histogram

LAB space

| \
LAB color histogram

Observations are obtained by g' -
converting pixel values within

bounding boxes to LAB colorspace,

and concatenating to form an AB

channel histogram

@ SINTEF Technology for 3 better society
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SIR particle filter: measure

Obtain an observation z, for l u M m u u

each state estimate x,

‘ Tl
s AT U
\

gave rise to z, using
observation model.

o e) H ‘” HH" L]

Measure: weights are
propartional to the
observation likelihood

VTR T DT

p(x12)

@ SINTEF Technology for a better society
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Observation model

= Obtain observation z, for
each state estimate x,

@ SINTEF Technology for a better society
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Observation model

= Obtain observation

z, for each state

estimate x,_ z
Evaluate likelihood that

an x, gave rise to z using
observation model.

it (3,0)

Pl =e

known
color model

Observation model compares z, to
a known color model ¢ using the
KL divergence.

@ SINTEF Technology for a better society

23



Observation model

= Obtain observation
z, for each state

estimate x, x poor
Evaluate likelihood that match

an x, gave rise to z, using

observation model. N
Pl |xry = gm0 “
known
color model 5
&
3 b
Observation model compares z, to
a known color model ¢ using the
KL divergence.

@ SINTEF Technology for 3 better society
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Observation model

= Obtain observation
z, for each state
estimate x;_

Evaluate likelihood that

an x, gave rise to z,using
observation model.

Assign weights are
proportional to the
likelihood response

w =p(zx!)

@ SINTEF Technology for a better society
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Obtaining a solution

= So far, we do not have an explicit state estimate, we have a cloud of particles!

® How do we extract an answer? It depends...
= Compute 3 mean or median particle
= Confidence: inverse variance
= For discrete labels, this does not work!
= Usethe mode?

@ SINTEF Technology for 3 better society
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Observation model

= Obtain observation

z, for each state

estimate x, poor
Evaluate likelihood that match
an x, gave rise to z,using

observation model.

Assign weights are
proportional to the
likelihood response

W =p(z,|x)

@ SINTEF

Technology for a better society

SIR particle filter

Begin with weighted
samples from t-1

Resample: draw
samples according to
{w N

Drift: apply motion
model (no noise)

Diffuse: apply noise to
spread particles

= Measure: weights are
assigned by likelihood
response

= Finish: density estimate

@ SINTEF Technology for a better society

Particle filter

standard observal o mooe!

adaptive observation mode! per-parti tive model
L |

D.Kiein, D. Schulz, S. Frintrop, and A. Cremers, 2301 o Tr
International Conference on Intelligent Robots and qulems (IROS), 2010

@ SINTEF Technology for a better society
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Particle filter

ard obsenvatiol

A

Plive observationmodel article adaptiveimodel

D.Klein, D. Schulz, S. Frintrop, and A. Cremers, Adptive Real-Time Video Track Arbitrary Objects,
International Conference on Intelligent Robots and Systems (IROS), 2010

@ SINTEF
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Summary: particle filters

= Number of samples N is important
= Use as few as necessary (for efficiency)
* Butuse enough to do a good job
exploring the state space

= Complexity grows exponentially with dimensionality of the state space

00 =
x

o0—0—0 !
% omex Y Comeo
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Particle filters in action

Michael Isard and Andrew Blake (0NDENSATION - conditional o
International Journal of Computer Vision (LICV), 29,1, 5--28, (1998)

@ SINTEF Technology for 3 better society

y propagation for visualtracking

4/15/13

Summary: particle filters

= Represents arbitrary (multi-modal) densities
= Converges to true posterior for nonlinear, non-Gaussian systems
= Efficient: concentrates particles on interesting regions

= Works for many types of state spaces

@ SINTEF Technology for a better society

T
Things to think about...

= Initialization
® Byhand
= Background subtraction
= Detection
= Observation models
= Generative -» render the state on top of the image and compare
= Discriminative -> classifier or detector score
= Prediction vs Correction
= |fdynamics dominate, cues form the data may be ignored
= |f observation model dominates, tracking is not smoath
= Nonlinear Dynamics
= Needed for multiple objects, discrete state elements, etc.

@ SINTEF Technology for a better society

Particle filters in action

= tracking a ball

Particle filter recavers
1. multi-modal
2.random sampling

@ SINTEF Technology for a better society
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Particle filters in action

@ SINTEF Technology for 3 better society

Reading materials

+ Good survey on tracking algorithms:
— A Yilmaz et al. Object tracking: A survey, ACM Comput. Surv,, 38(4), 2006
+  Detectand assign
— C.Stauffer and W. E. L. Grimson. Learning patterns of activity using real-time tracking, IEEE Transaction
on Pattern Analysis and Machine Intelligence, 22(8):747-757, 2000.
\Zgorée%ggd K.R. Connor. Multiview segmentation and tracking of dynamic occluding layers. In BMVC

 Mean shift tracker
—  D.Comaniciu, V. Ramesh, and P. Meer, Kernel-based object tracking. [EEE Trans. Patt. Analy. Mach. Intell.
25,564-575, 2003
— GR Bradski et al. Computer Vision Face Tracking For Use in a Perceptual User Interface, Interface 2, pp
12-21,1998 - in OpenCV'
ttp://openc
*  LKtracker
—Jianbo Shiand Carlo Tomasi Good Features to Track, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR34), 1994, pp. 593 - 600.
—  ZKalal, K. Mikolajczyk, and J. Matas, “Forward-Backward Error: Automatic Detection of Tracking
Failures,” International Conference on Pattern Recognition, 2010, pp. 23-26.

Short credit: Some of the slides blatantly "stolen” from Kevin Smith, ETHZ

2 com/modules/video/doc/motion. analysis..and.object. tracking htmi#camshift

(3 SINTEF Technology for a better society
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Reading material

Exercise: Try to develop the recursive Bayesian filtering equation from the expressions
given in the lecture

+  Skim a tutorial that covers Kalman filtering and particle filters

Arulampalam, M.S; Maskell, S,; Gordon, N; Clapp, T, , A tutorial on particle filters for online

50, no.2, pp.174-188, Feb 2002, doi: 10.1109/78.978374
URL: http://ieeexplare.ieee.org/stamp/stamp,jsp?
tp=&arnumber=978374&isnumber=21093

D.Klein, D. Schulz, S. Frintrop, and A. Cremers,
Adaptive Real-Time Video Tracking for Arbitr

Intelligent Robots and Systems (IR0S), 2010

ry Objects , International Conference on

«  Credits: This lecture was heavily based on slides from Kevin Smith, ETZH

nonlinear/non-Gaussian Bayesian tracking, Signal Processing, IEEE Transactions on, vol.
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