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Linear feature transforms

Anne Solberg (anne@ifi.uio.no)

Today: 

• Feature transformation through principal
component analysis

• Fisher’s linear discriminant function
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Feature transforms

• We now consider computing new features as linear 
combinations of the existing features.

• From the original feature vector x, we compute a 
new vector y of transformed features
y=ATx
y is M-dimensional, x is N-dimensional, A is a MN matrix.

• y is normally defined in such a way that it has lower 
dimension than x.
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Vector spaces
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Linear transformation
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Eigenvalues and eigenvectors
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Interpretation of eigenvectors and eigenvalues
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Linear feature transforms
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Signal representation vs classification

• The search for the feature extraction mapping 
y = f(x) is guided by an objective function we want to 
maximize.

• In general we have two categories of objectives in feature 
extraction:
– Signal representation: Accurately approximate the samples in a 

lower-dimensional space by minimizing the mean square error 
between the original feature vector and the low-dimensional 
projection.

– Classification: Keep (or enhance) class-discriminatory information in 
a lower-dimensional space.
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Signal representation vs classification

• Principal components analysis (PCA)
– - This representation is optimal in terms of 

signal representation
– Upsupervised
– Minimize the mean square representation 

error
– This will correspond to first choosing the 

direction with maximum variance.
• Fisher’s Linear discriminant 

– This transform is optimal in terms of 
supervised classification.

– It maximizes the distance between
the classes
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Correlation matrix vs. 
covariance matrix

• x is the covariance matrix of x

• Rx is the correlation matrix of x

• Rx=x if x=0. 

   T
x xxE  

   T
x xxER 



INF 5300 11

Principal component or
Karhunen-Loeve transform

• Let x be a feature vector.
• Features are often correlated, which might lead to 

redundancies.
• We want a transform which yields uncorrelated 

features.
• We seek a linear transform y=ATx, and the yis should be 

uncorrelated.
• The basis vectors will then be linear independent. 
• The yis are uncorrelated if E[y(i)y(j)]=0, ij.
• If we can express the information in x using uncorrelated 

features, we might need fewer coefficients.
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Principal component transform
• The correlation of Y is described by the correlation matrix

RY=E[yyT]=E[ATxxTA]=ATRxA            Rx is the correlation matrix of X
Rx is symmetric, thus all eigenvectors are orthogonal.

• We seek uncorrelated components of Y, thus Ry should be 
diagonal. 

From linear algebra:
• Ry will be diagonal if A is formed by the orthogonal 

eigenvectors ai, i=0,...,N-1 of Rx:    Ry=ATRxA=, where 
is diagonal with the eigenvalues of Rx, i, on the diagonal.

• We find A by solving the equation ATRxA= (using 
Singular Value Decomposition (SVD)).

• A is formed by computing the eigenvectors of Rx. Each 
eigenvector will be a column of A.
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Mean square error approximation

• x can be expressed exactly as a combination of all N basis vectors: 

• An approximation to x is found by using only m of the basis vectors:

• The PC-transform is based on minimizing the mean square error 
associated with this approximation.

• The mean square error associated with this approximation is 
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• Furthermore, we can find that

• The mean square error is thus 

• The error is minimized if we select the eigenvectors 
corresponding to the m largest eigenvales of the 
correlation matrix Rx.

• The transformed vector y is called the principal components of 
x. The transform is called the principal component transform or 
Karhunen-Loeve-transform.
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Principal component of the 
covariance matrix

• Alternatively, we can find the principal components of 
the covariance matrix x.

• If we have software for computing principal 
components  of Rx, we can compute principal 
components from x by first setting z=x- x and 
compute PC(z). 

• The principal component transform is not scale 
invariant, because the eigenvectors are not invariant. 
Often, normalization to data with zero mean and unit 
variance is done prior to applying the PC-transform.
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Principal components 
and total variance

• Assume that E[x]=0. 
• Let y=PC(x).
• From Ry we know that the variance of component yj

is j.
• The eigenvalues j of the correlation matrix Rx is thus 

equal to the variance of the transformed features. 
• By selecting the m eigenvectors with the largest 

eigenvalues, we select the m dimensions with the 
largest variance.

• The first principal component will be along the 
direction of the input space which has largest 
variance.
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Geometrical interpretation of 
principal components

• The eigenvector 
corresponding to the 
largest eigenvalue is the 
direction in n-dimensional 
space with highest 
variance.

• The next principal 
component is orthogonal 
to the first, and along the 
direction with the second 
largest variance.

Note that the direction with the highest variance is 
NOT related to separability between classes. 
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Principal component images

• For an image with n bands, we can compute the 
principal component transform of the entire image X.

• Y=PC(X) will then be a new image with n bands, but 
most of the variance is in the bands with the lowest 
index (corresponding to the largest eigenvalues).
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Principal component images

• For an image with n bands, we can compute the 
principal component transform of the entire image X.

• Y=PC(X) will then be a new image with n bands, but 
most of the variance is in the bands with the lowest 
index (corresponding to the largest eigenvalues).

• Here we use all the pixels in the image to compute 
the nxn-correlation matrix Rx
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PC and compression
• PC-transform is optimal transform with respect to preserving the 

energy in the original image.
• For compression purposes, PC-transform is theoretically optimal 

with respect to maximizing the entropy (from information 
theory). Entropy is related to randomness and thus to variance.

• The basis vectors are the eigenvectors and vary from image to 
image. For transmission, both the transform coefficients and the 
eigenvectors must be transmitted.

• PC-transform can be reasonably well approximated by the 
Cosinus-transform or Sinus-transform. These use constant basis 
vectors and are better suited for transmission, since only the 
coefficients must be transmitted (or stored).
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PC vs. Fisher’s linear 
discriminant transform

• The principal component transform has no information about 
the classes in the data. 

• The PC-projection might not be helpful to improve class 
separability.

• From an input vector x with dimension m, PC-transform gives us 
a projection y with dimensions 1,...,m (depending on how many 
eigenvalues we include).

• A projection with Fishers linear discriminant gives us y with 
dimensions 1,...,K-1, where K is the number of classes. 

• Fishers linear discriminant finds the projection that maximizes 
the ratio of between-class to within-class scatter. 
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Fisher’s Linear Discriminant

• Goal:
– Reduce dimension while preserving class

discriminatory information

• Strategy (2 classes):
– We have a set of samples x={x1, x2, …, 

xn} where n1 belong to class 1 and the
rest n2 to class 2. Obtain a scalar value
by projecting x onto a line y: y=wTx

– Challenge: find w that maximizes
the separability of the classes
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A simple criterion function: 
2 features and 2 classes

• To find a good projection vector, we need to define a measure of
separation between the projections . This wil be the criterion
function J(w)

• The mean vector of each class in the spaces spanned by x and y are

• A naive choice would be projected mean difference, 

This criterion does not 
consider variance
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A criterion function including variance:
2 features and 2 classes

• Fisher’s solution: maximize a function
that represents the difference between
the means, scaled by a measure of the
within class scatter

• Define classwise scatter (similar to 
variance)

• is within class scatter
• Fisher’s criterion is then

• We look for a projection where
examples from the same class are
close to each other, while at the same 
time projected mean values are as far 
apart as possible.



Introducing general scatter matrices

• In M-dimensional space, let us now consider matrices
describing the variance:
– Variance INSIDE each class
– Variance BETWEEN the classes (how well separated are the

classes)
– The total variance in the data set is constant and 

independent of any class labels
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Scatter matrices – M classes
• Within-class scatter matrix:

• Between-class scatter matrix:

• Mixture or total scatter matrix: 
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Some matrix algebra
• M is a symmetric ll matrix

• |M| is the determinant of M. It is equal to the product of all 
eigenvalues of M. 

• M can be expressed in terms of eigenvalues i and eigenvectors
vi. 

• |M| is nonzero only if the matrix has full rank (all eigenvalues
are nonzero)

• trace(M) is equal to the sum of eigenvalues of M.
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Relation between eigenvalues and
the scatter of a matrix

• The eigenvalues associated with an eigenvector tells how strong
the contribution along this direction is.

• A scalar measure of the scatter matrix M is its determinant (the
product of the eigenvalues). This gives us ONE measure of the
scatter in the matrix.

• If M is a covariance matrix, |M| is a measure of the l-
dimensional hypervolume of the data. If the data lies in a 
subspace, |M| will be zero.

• For a covariance matrix M, trace(M) is the sum of the
eigenvalues and thus a measure of the spread or scatter in A.
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• The total scatter is 
Sm=Sw+Sb

• Consider the criterion function

• J1 will be large when the variance among the global mean
is large compared to the within-class variance.
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Better scatter criteria functions –
J2 and J3

• J2 and J3 are invariant to linear transformations.

 bw

mw
w

m

SStraceJ

SS
S

S
J

1
3

1
2











INF 5300 31

Fisher’s linear discriminant
• Fisher’s linear discriminant is a transform that uses the

information in the training data set to find a linear combination 
that best separates the classes. 

• It is based on the criterion J3:

• From the feature vector x, let Sxw and Sxb be the within-class
and between-class scatter matrix.

• The scatter matrices for the transformed variable y=ATx are:
Syw=ATSxwA Syb=ATSxbA
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• In subspace y, J3 becomes:

• Problem: find A such that J3 is maximized. 
• Solution: set 
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• The scatter matrices Syw and Syb are symmetric, and can thus be 
diagonalized by the linear transform (appendix B)

• B is a  ll matrix, I the identity matrix, and D an ll diagonal 
matrix. I and D are the scatter matrices of the transformed vector

DBSBIBSB yb
T

yw
T   and 

xAByBy TTT ˆ
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• J3 is invariant under linear transformations and:

• Furthermore, 

• Because D is diagonal, this is an eigenvalue-problem, 
• D must have the eigenvalues of on the diagonal 

• C must have the corresponding eigenvectors of
as columns... 
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• Note that

is a sum of M (M=nof. classes) matrices of rank 1, 
only m-1 of these elements are independent, 
meaning that the rank of Sxb is M-1 or less (no more 
than M-1 eigenvalues are nonzero). 

• This means also that has rank M-1 or less.
• Fisher’s discriminant transform can give us a l-

dimensional projection, where lM-1.
– Note: with 30 features (m=30) and 5 classes (M=5) this

gives us a projection with dimension 4 or less. 
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Computing Fishers linear discriminant

• For l=M-1:
– Form a matrix C such that its columns are the M-1 

eigenvectors of
– Set

– This gives us the maximum J3 value.
– This means that we can reduce the dimension from m to M-

1 without loss in class separability power (but only if J3 is a 
correct measure of class separability.)

– Alternative view: with a Bayesian model we compute the
probabilities P(i|x) for each class (i=1,...M). Once M-1 
probabilities are found, the remaining P(M|x) is given 
because the P(i|x)’s sum to one.
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Computation: Case 2: l<M-1

• Form C by selecting the eigenvectors corresponding
to the l largest eigenvalues of

• We now have a loss of discriminating power since

xbxwSS 1

xy JJ ,3ˆ,3 
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Comments on Fishers discriminant rule

• In general, projection of the original feature vector to 
a lower dimensional space is associated with some
loss of information.

• Although the projection is optimal with respect to J3, 
J3 might not be a good criterion to optimize for a 
given data set. (Note that J3 is a kind of sum of a 
product of between-class and within-class scatter, 
where the sum is over all classes) 

• Minimizing J3 is not equivalent to minimizing the
classification error. 
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Limitations of Fisher’s discriminant

• It produces at most C-1 feature projections
• It is parametric, since it assumes unimodal gaussian likelihoods

• It will fail when the discriminatory information is not in the mean but in the
variance of the data
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Fisher’s discriminant example

Original data

Best 2 PCABest 2 Fisher’s
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Literature on pattern recognition

• Updated review and statistical pattern recognition:
– A. Jain, R. Duin and J. Mao: Statistical pattern recognition: a review, IEEE Trans. 

Pattern analysis and Machine Intelligence, vol. 22, no. 1, January 2001, pp. 4--

• Classical PR-books
– R. Duda, P. Hart and D. Stork, Pattern Classification, 2. ed. Wiley, 2001
– B. Ripley, Pattern Recognition and Neural Networks, Cambridge Press, 1996.
– S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, 2006.

Data example

• Dimensionality reduction with PCA vs. Fisher
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PCA example – original image
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• Satellite image from Kjeller
• 6 spectral bands with different

wavelengths

1 Blue 0.45-0.52 Max. penetration of 
water

2 Green 0.52-0.60 Vegetation and 
chlorophyll

3 Red 0.63-0.69 Vegetation type

4 Near-IR 0.76-0.90 Biomass

5 Mid-IR 1.55-1.75 Moisture/water content
in vegetation/soil

7 Mid-IR 2.08-2.35 Minerals

Principal component images
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Principal component 1 
Principal component 2 Principal component 3 

Principal component 4 Principal component 5 Principal component 6 



Example: inspecting the eigenvalues
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Plotting

will give indications
on how many
features are needed
for representation
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The representation error we get
with m of the N PCA-
components is given as

Fisher’s linear discriminant on
the Landsat image
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1. Fisher feature 2. Fisher feature 3. Fisher feature



Scatter plots for the example –
Original spectral bands
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Scatter plots for the example –
PCA-components
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PCA 1 and 2 PCA 1 and 3 PCA 2 and 3



Scatter plots for the example –
Fisher-components
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Fisher  1 and 2 Fisher 1 and 3 Fisher 2 and 3

Comparison of
overall classification accuracy

• All 6 original spectral bands: 91.9% correct
classification

• PCA components 1-3: 90.8% correct
• Fisher components 1-3: 91.5% correct
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