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Signal representation vs classificationSignal representation vs classification

• Principal components analysis (PCA)• Principal components analysis (PCA)
– - signal representation, unsupervised
– Minimize the mean square representation 

error
Linear discriminant analysis (LDA)• Linear discriminant analysis (LDA)

– -classification, supervised
– Maximize the distance between

the classes
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Mean square error approximationMean square error approximation

• x can be expressed as a combination of all N basis vectors:• x can be expressed as a combination of all N basis vectors: 
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• An approximation to x is found by using only m of the basis vectors:
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• The PC-transform is based on minimizing the mean square error 
associted with this approximation.

0i subspace spanned by m eigenvectors

• The mean square error associated with this approximation is 
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• Furthermore, we can find that

  









11
2ˆ

N

mi
ii

N

mi
i

T
i aaxxE 

• The mean square error is thus 
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• The error is minimized if we select the eigenvectors 
corresponding to the m largest eigenvales of the correlation 
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p g g g
matrix Rx.

• The transformed vector y is called the principal components of 
x. The transform is called the principal component transform orx. The transform is called the principal component transform or 
Karhunen-Loeve-transform.
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Principal components 
d l iand total variance

Assume that E[x] 0• Assume that E[x]=0. 
• Let y=PC(x).

F R k th t th i f t• From Ry we know that the variance of component yj
is j.

• The eigenvalues  of the correlation matrix R is thus• The eigenvalues j of the correlation matrix Rx is thus 
equal to the variance of the transformed features. 

• By selecting the m eigenvectors with the largest• By selecting the m eigenvectors with the largest 
eigenvalues, we select the m dimensions with the 
largest variance.g

• The first principal component will be along the 
direction of the input space which has largest 
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variance.

Geometrical interpretation of 
i i l tprincipal components

• The eigenvector• The eigenvector 
corresponding to the 
largest eigenvalue is the 
di ti i di i ldirection in n-dimensional 
space with highest 
variance.

• The next principal 
component is orthogonal 
to the first and along theto the first, and along the 
direction with the second 
largest variance.

Note that the direction with the highest variance is 
NOT related to separability between classes

INF 5300 6

NOT related to separability between classes. 



Scatter matrices M classesScatter matrices – M classes
• Within-class scatter matrix:
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• Between-class scatter matrix:
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Variance within each class
Between class scatter matrix:
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Mixture or total scatter matrix:
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• Mixture or total scatter matrix: 
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Variance of feature with 

respect to the global mean 

Fisher’s linear discriminantFisher s linear discriminant
• Fisher’s linear discriminant is a transform that uses the• Fisher s linear discriminant is a transform that uses the 

information in the training data set to find a linear combination 
that best separates the classes. 

• It is based on the criterion J3:
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• From the feature vector x, let Sxw and Sxb be the within-class
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From the feature vector x, let Sxw and Sxb be the within class 
and between-class scatter matrix.

• The scatter matrices for the transformed variable y=ATx are:
T T
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Syw=ATSxwA      Syb=ATSxbA



• In subspace y J becomes:• In subspace y, J3 becomes:
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• Problem: find A such that J3 is maximized. 
• Solution: set



Solution: set 
 

03
A

AJ







         022
1113

xw
T

xbxw
T

xb
T

xw
T

xw ASAASASAASAASAAS
A

AJ 







)( 11
ybywxbxw SSAASS  



INF 5300 9

Computing Fishers linear discriminantComputing Fishers linear discriminant

F l M 1• For l=M-1:
– Form a matrix C such that its columns are the  M-1 

eigenvectors of xbxwSS 1eigenvectors of  
– Set 

xbxwSS

xCy Tˆ

– This gives us the maximum J3 value.
– This means that we can reduce the dimension from m to M-

1 without loss in class separability power (but only if J is a1 without loss in class separability power (but only if J3 is a 
correct measure of class separability.)

– Alternative view: with a Bayesian model we compute the 
probabilities P(i|x) for each class (i=1,...M). Once M-1 
probabilities are found, the remaining P(M|x) is given 
because the P(i|x)’s sum to one.
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Can you explain SVM with this?Can you explain SVM with this?
• There can be many such• There can be many such 

hyperplanes.
• Which of these two is best, and ,

why?
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The optimization problem with marginsThe optimization problem with margins

• The class indicator for pattern i y is defined as 1 if y belongs to• The class indicator for pattern i, yi, is defined as 1 if yi belongs to 
class 1 and -1 if it belongs to 2.

• The best hyperplane with margin can be found by solving the 
optimization problem with respect to w and w0 : 
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• Checkpoint: do you understand this formulation?
• How is this criterion related to maximizing the margin?

SVM 25.4.12 INF 5300 12



The nonseparable caseThe nonseparable case
• If the two classes are nonseparable• If the two classes are nonseparable, 

a hyperplane satisfying the 
conditions wTx-w0=1 cannot be 
f dfound.

• The feature vectors in the training 
set are now either:

1. Vectors that fall outside the band 
and are correctly classified.

2 V t th t i id th b d
Correctly classified

2. Vectors that are inside the band 
and are correctly classified. They 
satisfy 0yi(wTx+w0)<1

Erroneously classified

3. Vectors that are misclassified –
expressed as yi(wTx+w0)<0
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• The three cases can be treated under a single type of contraints if• The three cases can be treated under a single type of contraints if 
we introduce slack variables i:

T wxwy  1][ 0

– The first category (outside, correct classified) have i=0
The second category (inside correct classified) have 0  1

ii wxwy  1][ 0

– The second category (inside, correct classified) have 0 i 1
– The third category (inside, misclassified) have i >1

• The optimization goal is now to keep the margin as large as 
possible and the number of points with i >0 as small as possible.
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An example the effect of CAn example – the effect of C
• C is the misclassification cost.

C=0.2
C=100

• Selecting too high C will give a classifier that fits the trainingSelecting too high C will give a classifier that fits the training 
data perfect, but fails on different data set.

• The value of C should be selected using a separate validation 
set. Separate the training data into a part used for training, p g p g,
train with different values of C and select the value that gives 
best results on the validation data set. Then apply this to new 
data or the test data set. (explained later)
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The optimization problem with marginsThe optimization problem with margins

• The class indicator for pattern i y is defined as 1 if y belongs to• The class indicator for pattern i, yi, is defined as 1 if yi belongs to 
class 1 and -1 if it belongs to 2.

• The best hyperplane with margin can be found by solving the 
optimization problem with respect to w and w0 : 
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• Checkpoint: do you understand this formulation?
• How is this criterion related to maximizing the margin?
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The nonseparable caseThe nonseparable case
• If the two classes are nonseparable• If the two classes are nonseparable, 

a hyperplane satisfying the 
conditions wTx-w0=1 cannot be 
f dfound.

• The feature vectors in the training 
set are now either:

1. Vectors that fall outside the band 
and are correctly classified.

2 V t th t i id th b d
Correctly classified

2. Vectors that are inside the band 
and are correctly classified. They 
satisfy 0yi(wTx+w0)<1

Erroneously classified

3. Vectors that are misclassified –
expressed as yi(wTx+w0)<0
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• The three cases can be treated under a single type of contraints if• The three cases can be treated under a single type of contraints if 
we introduce slack variables i:

T wxwy  1][ 0

– The first category (outside, correct classified) have i=0
The second category (inside correct classified) have 0  1

ii wxwy  1][ 0

– The second category (inside, correct classified) have 0 i 1
– The third category (inside, misclassified) have i >1

• The optimization goal is now to keep the margin as large as 
possible and the number of points with i >0 as small as possible.
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An example the effect of CAn example – the effect of C
• C is the misclassification cost.

C=0.2
C=100

• Selecting too high C will give a classifier that fits the trainingSelecting too high C will give a classifier that fits the training 
data perfect, but fails on different data set.

• The value of C should be selected using a separate validation 
set. Separate the training data into a part used for training, p g p g,
train with different values of C and select the value that gives 
best results on the validation data set. Then apply this to new 
data or the test data set. (explained later)
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Snakes The energy functionSnakes - The energy function

dssvEsvEsvEE conimagessnake ))(())(())((
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Internal deformation energy
of the snake itself

Constraints on the shape of the
snake. Enchourages the contour

of the snake itself.
How it can bend and stretch.

A term that relates to gray 
levels in the image, e.g.

to be smooth. (Often omitted)

levels in the image, e.g. 
attracts the snake to points
with high gradient magnitude.

The minimum values is found by derivation: 

0
dv

dEsnake
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The internal deformation termThe internal deformation term
222
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First derivative
Measures how stretched the contour is.
Keyword: point spacing.

Second derivative
Measures the curvature or bending energy.
Keyword: point variation.

Imposes tension.
The curve should be short if possible.
Physical analogy: v acts like a membrane. 

Imposes rigidity.
Changes in direction should be smooth.
Physical analogy: v acts like a thin plate. 

 and  are penalty parameters that control the weight of the two terms.
Low  values: the snake can stretch much.Low  values: the snake can stretch much.
Low  values: the snake can have high curvature. 
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The energy functionThe energy function
• Simple snake with only two terms (no termination• Simple snake with only two terms (no termination 

energy):

simagessnake vEvEsE  int )()()(
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• We need to approximate both the first derivative andWe need to approximate both the first derivative and 
the second derivative of vs, and specify how Eedge will be 
computed.  
H h ld th k it t f it i iti l iti ?• How should the snake iterate from its initial position?
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Approximating the first derivative of vApproximating the first derivative of vs

Average distance
between points
on the contour

Distance between 
this point and the
next point
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Approximating the second derivative of vApproximating the second derivative of vs

Why is this correct?
Hint: Check the derivation

of the Laplace operator
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The Kass differential equationsThe Kass differential equations
• The coordinates of the snake should be found by solving the• The coordinates of the snake should be found by solving the 

differential equations iteratively:
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• The iterative solution was given by
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•  is a step size 
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Capture range problemsCapture range problems

The problem stems from the short ”range” of the• The problem stems from the short ”range” of the 
external fources.

• The inverse magnitude of the gradient will have• The inverse magnitude of the gradient will have 
significant values only in the vicinity of the salient 
edges. g

• This basically forces us to initialize the snake very 
close to the target contour.

• This problem is know as the capture range 
problem.
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Capture range problemsCapture range problems
• Xu and Prince define the vector field:• Xu and Prince define the vector field:

Tyxvyxuyx )),(),,((),( v

• It is v that will be the GVF.
• The field v is the field that minimizes the following functional:

  dxdyfvfvvuuG yxyx

222222   

• v(x,y) is  found by solving this equation.
•  is a parameter that controls the amount of smoothing.  p g

• Where have you seen the first term before (in this course)?
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Capture range problemsCapture range problems
  dxdyfvfvvuuG

222222   
• The goal is to minimize G. 
• The second term will have a minimum if v=f.
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• If f is small, the first term will dominate.
• This can also be written as 
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• If f is small, what remains is Lagrange’s equation:
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Capture range problemsCapture range problems
• The first term will smooth the data that is far from edges the• The first term will smooth the data, that is, far from edges the 

field will be kept as smooth as possible by imposing that the 
spatial derivatives be as small as possible.

• When |f| is small the vector field will be dominated by the• When |f| is small, the vector field will be dominated by the 
partial derivatives of the vector field, yielding a smooth field. 

• Close to edges (where |f| is large) the field is forced to 
resemble the gradient of f itselfresemble the gradient of f itself.

• So v is smooth far from edges and nearly equal to the gradient 
of f close to edges.

• The term μ just defines the weight we give the different terms 
in the functional.

• The field v is computed iteratively  p y
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Gradient magnitude
Laplacian term

A term in the gradient
direction
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