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INF 5300 – Flexible shape extraction
Anne Solberg (anne@ifi.uio.no)

Next two lectures:

•Example: finding the border of the left ventricle 

• Deformable templates

•Snakes

•Active shape models
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Example – segmenting ultrasound images 
of the hearth

Find the border of the left ventricle
• 3D object with a closed border
• 2D views have partly 

discontinuous border
• Noisy image
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Can previous segmentation methods 
work?

• Thresholding?
• Hit and miss?
• Region growing?
• Edge-based segmentation?
• Watershed?
• Line detection?
• Hough transform?

– Ellipse?
– Can be extended to general 

shapes if the precise 
mathematical description of the 
shape is known.
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Motivation

• Common assumption for many segmentation 
methods:
– Digital images will show real world objects as well-defined 

regions with unique gray levels and a clear border against a 
uniform background.

• There are many applications where this assumption does not 
hold.

– Textured images.
– Noisy images (ultrasound,  SAR (syntetic aperture radar)) 

images.
– Images with partly occluded borders

» 2D images of 3D objects
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Motivation

Beware of extreme case of blending and occlusion
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Motivation

• We have seen several cases where prior knowledge 
is used:
– Thresholding: knowledge about distribution of gray levels 

can be used.
– Adaptive thresholding: Window size should be determined in 

relation to the size of the objects we want to find.
– Character recognition: size (and shape) of the typical 

characters useful for both segmentation and feature 
extraction. 

– Hough transform: a precise model for the shape is used. 
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Motivation

1. The images we will look at now are just another 
example of segmentation methods using models 
external to the image in order to obtain the best 
possible segmentation.

2. A typical application where these methods are useful 
is segmentation of medical ultrasound images
• Much noise and blurred edges
• Much knowledge about the shape of the objects. 
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Introduction to deformable templates
and energy functions

• Consider detection of the eye. 
• An eye template consists a circle (the 

pupil) inside a closed contour of two 
parabolas.

• Parabola:

• Find the values of the parameters 
{cp, a, b, c, cc, r} that best fits the 
image, in the sense that they 
maximize an energy function
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Introduction to deformable templates
• First, define an edge energy. The sum is over all edge points that are either on 

the parabolas or on the circle, and normalized by the nof. points on the contour. 

• Assume also that the iris is darker than the sclera (the white area). Let Px,y be 
the gray levels.

• Consider backscatter energy for the iris: 

• Since the iris is dark, a minus sign is used to create a function that has large 
values for pixels with small gray levels.  

• For the white regions, we compute the average pixels value of pixels inside the 
parabola, but outside the circle: 
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Combining the energy functions:
• Combine the three terms into:

• cp, cv, and ce are weights that influence the weighting of the 
different energy terms. 

• Parameters to estimate: 8 shape parameters, 3 weights
– How do we optimize all 11 parameters?
– Suboptimal solutions can be found using genetic algorithms, but 

simpler models with fewer parameters are more popular. 

ppvvee EcEcEcE 
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The initial idea: Snakes

• An active contour (snake) is a set of points which 
aims to enclose a target feature. 

• Snakes are model-based methods for localization and 
tracking of image structures.

• The snake is defined as an energy minimizing 
contour (often defined using splines). 

• The energy of the snake depends on its shape and 
location within the image.

• Snakes are attracted to image boundaries through 
forces. 
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The initial idea: Snakes

• The approach is iterative:
1. The user draws an initial approximate contour.
2. A dynamic simulation is started.
3. The contour is deformed until it reaches equilibrium.

• Snakes depend on:
– Interaction with the user
– Interaction with a high-level description.
– Interaction with image data adjacent in space and time. 
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The initial idea: Snakes

• The energy of the snakes is affected by different 
types of forces:
1. Internal forces:

• Tension/elasticity forces that make the snake act like a 
membrane.

• Rigidity forces that make the snake act like a thin plate that 
resists bending. 

2. Image forces.
3. Constraint forces

• User-supplied forces that come from higher-level image 
understanding processes. 
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Representation of the contour

• The contour is represented as:
v(s) = (x(s), y(s))T

• This is a parametric representation of the contour.
• The vector describing the position of every point on 

the contour makes one pass over the entire contour 
as s varies from its mimimum to its maximum value.

• Typically, s is normalized
s[0,1]

• We only need coordinates (x(s),y(s)) of the points on 
the contour, not a mathematical equation for the 
contour. 
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What is a parametric contour?

• Let x(s)=cos(2s) and y(s)=sin(2s)
• Let s[0,1]
• Then v(s) describes a circle as s varies from 0 to 1. 

• See also contour representation in INF 3300 
http://www.ifi.uio.no/~inf3300/2007H/object-representation.pdf
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Energy functions

• Finding the contour is described as an energy 
minimization problem. 

• The energy function consists of several terms:
– The snakes own properties (bending, stretching)
– Image energy (edge magnitude along the snake)
– Constraints making the contour smooth etc. 

• The energy function is also called a functional. 
• The final position of the contour will correspond to a 

minimum of this energy function.
• Typically, the energy function is minimized in a 

iterative algorithm. 
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The energy function
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Internal deformation energy
of the snake itself.
How it can bend and stretch.

A term that relates to gray 
levels in the image, e.g. 
attracts the snake to points
with high gradient magnitude.

Constraints on the shape of the
snake. Enchourages the contour
to be smooth. (Often omitted)

• The minimum values is found by derivation: 

0
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The internal deformation term
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First derivative
Measures how stretched the contour is.
Keyword: point spacing.
Imposes tension.
The curve should be short if possible.
Physical analogy: v acts like a membrane. 

Second derivative
Measures the curvature or bending energy.
Keyword: point variation.
Imposes rigidity.
Changes in direction should be smooth.
Physical analogy: v acts like a thin plate. 

•  and  are penalty parameters that control the weight of the two terms.
• Low  values: the snake can stretch much.
• Low  values: the snake can have high curvature. 
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The image term
• Attracts the snake to features in the image, like edge pixels or bright 

pixels.
• Originally, it consisted of a term for lines, edges (and maybe also 

terminations):

• wline, wedge, and wterm are weights that control the influence of each term. 
• Eline can be set to image intenstity values. If wline is positive, it will attract 

the snake to dark regions, and to bright regions if wline is negative. 
• Eedge can be computed using an edge detector.
• Eterm is not commonly used. 
• In general, Eimage is an integral over the curve (we will later discretize the 

curve)
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The image term

• P(v(s)) denotes a scalar potential function defined on the image 
plane. 

• We choose P(x,y) in such a way that is coincides with special 
features in the image, e.g. bright or dark areas, or edges. 

• If I(x,y) is the intensity for point (x,y), what kind of structure does 
this function attract the snake to?

• A common way of defining P(x,y) is: 
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The energy function
• Simple snake with only two terms (no termination 

energy):

• We need to approximate both the first derivative and 
the second derivative of vs, and specify how Eedge will be 
computed.  

• How should the snake iterate from its initial position?

edge
ss

simagessnake

E
ds

vd

ds

dv

vEvEsE

 


2

2

22

int )()()(

INF 5300 22

How do we implement this?

• The energy function involves finding the new 
location of S new coordinates (xs,ys), 0s1 for one 
iteration.

• Which algorithm can we use to find the new 
coordinate locations?
1. Greedy algorithm

– Simple, suboptimal, easier to understand

2. Complete Kass algorithm
– Optimizes all points on the countour simultaneously by solving 

a set of differential equations. 

– These two algorithms will now be presented.
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The greedy algorithm for snakes
Define snake points and 

parameters ,, 

Start with first snake point

Initialize minimum energy 
and coordinates

Determine coordinates of neighbourhood 
point with lowest energy

Set new snake point coordinates 
to new minimum

Finish iteration

More
snake
points?

No

Yes
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Coordinates of the initial contour

• The starting point of the snake is the initial contour. 
It can e.g. be no (number of points) on a circle with 
radius r: 
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Approximating the first derivative of vs
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Approximating the second derivative of vs
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Computing Eedge

• Eedge can be implemented as the magnitude of the 
Sobel operator at point (x,y).

• The energy should be minimized, so we invert the 
edge image (maximizing a function f is equvalent to 
minimizing –f).

• Normalize all energy terms so that they have an 
output in the inteval [0,1].
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The full greedy algorithm
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Comments on the greedy algorithm

• Edge points can be allowed to form corners if points 
with large gradient magnitude and large change in 
direction (above a threshold) are not included in the 
summations.

• A threshold on the number of changes done in a 
single iteration can be used to avoid oscillations 
between two contours with very similar energy. 

• If =0, contour points can have very different 
spacing.

• If =0, points with high curvature can be allowed 
(this can be allowed locally if  varies with s). 

• If =0, we ignore the image and the position of the 
contour can be far from the real edge in the image. 

INF 5300 30

From the greedy algorithm to a full snake

• The greedy algorithm only finds the minimum energy 
for one point (x,y) on the snake at the time, and only 
points that are neighbors of current snake points are 
checked at a given iteration.

• A full algorithm should minimize the energy for all 
snake points vs, s=1,S. 
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The complete snake - derivation
• Assume that we seek an iterative solution.
• Assume that we have one solution 

• If this solution is perturbated slightly by v(s), the solution that 
has minimum energy must satisfy:

• The slight spatial perturbation is defined as v(s)=(x(s), y(s)). 
• The perturbed snake solution is: 
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The new solution should be a minimum,
so the derivative must be 0.
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• The snake equation is: 

• With a slight perturbation:

• Insert the values derived for Eint and Eedge:
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• Separate into x(s) and y(s): 
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• Use Taylor series expansion on Eedge: 

• Eedge must be twice differentiable, which holds for edge information. 
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• Since  is small, ignore alle second order terms in  and reformulate  
Esnake: 
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• Since     is a valid solution, it must be a local minimum and the two 
intergral terms must be zero:
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• By integration we get:

• As s goes from 0 to 1, we tranverse one full contour and end up at 
precisely the same point. Thus 

• Because of this, the first, third and fourth term is zero. 
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• So we get: 

• Because this must be true for all x(s) the term within the outer {} 
must be zero:

• A similar derviation can be done for y(s). Thus, we have a pair of 
differential equations. 

• A complete snake must solve these two equations. 
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Solving the differential equations
• So, we have two differential equations.
• We approximate the first order derivatives: dx(s)/dsxs+1-xs

• And the second order derivatives:
d2x(s)/ds2 xs+1-2xs+xs-1

• We discretize the contour into S (s=1,..,S) points with spacing 
h:
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• We can write this on the form 

• This is also a matrix equation:  Ax=fx(x,y) where fx(x,y) is the 
first order differential edge magnitude along the x-axis and 
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• The equivalent holds for y(s). So we have two equations
Ax=fx(x,y)    
Ay=fy(x,y)

• These means that the snake energy should be balanced by the 
edge energy. 

• We need an iterative approach to get a solution that is globally 
optimal (one single iteration by computing A-1 gives a local 
optimal solution). 

• An iterative solution must have snake points that depend on 
time, a snake that can move. 

• Let x<i>,y<i> denote the solution at time i. 
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Manipulating the equation
• We have: 

• To solve these equations, set them equal to a small step size l 
times the negative time derivatives of the coordinates (also 
assume for simplicity that fx and fy are constant during one 
time step):

• If the solution is at an equilibrium, the right hand side will 
equal 0 and the original equation be fullfilled.

• Rewrite this as:
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• The matrix A+I is pentadiagonal banded and can be 
inverted fast using LU-decomposition. 

• A whole set of contour points is found for each 
solution. 
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