INF5300

Linear feature transforms

- Linear feature transforms
- Principal component analysis (PCA)
- Fisher's linear discriminant analysis

Curriculum: See links to pdfs on course page.

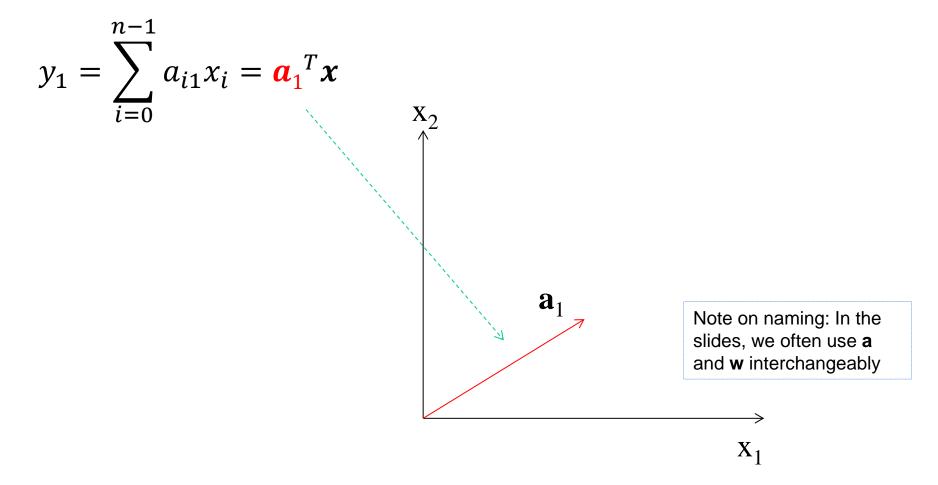
Linear feature transforms

• We create new features by computing linear combinations of the existing features, $x_1, x_2, ... x_n$:

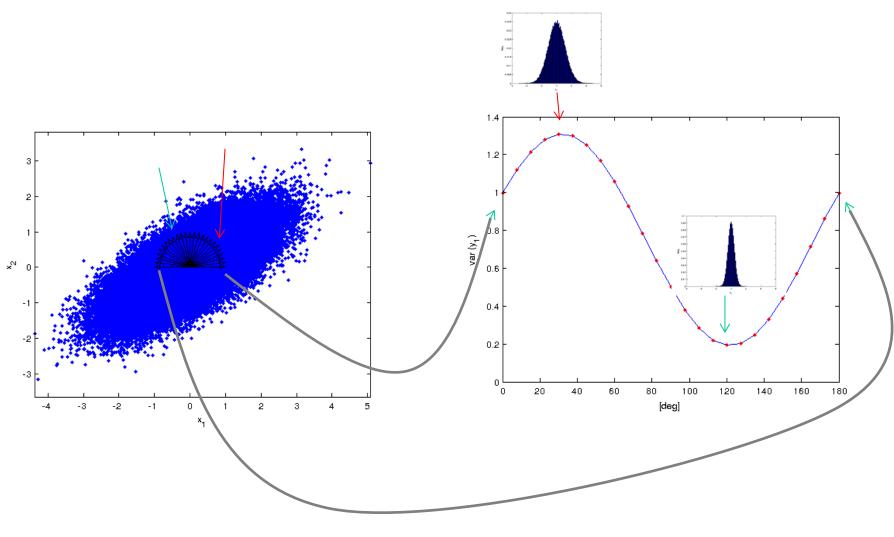
$$y_1 = \sum_{i=0}^{n-1} a_{i1} x_i$$
, $y_2 = \sum_{i=0}^{n-1} a_{i2} x_i$, ... $y_m = \sum_{i=0}^{n-1} a_{im} x_i$

- In matrix notation $\mathbf{y} = \mathbf{A}^\mathsf{T} \mathbf{x}$
- If y has fewer elements than x, we get a feature reduction

Visualizing the weights in 2D/3D

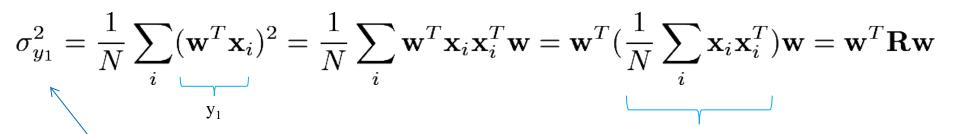


Variance of single y₁ feature



Variance of y₁

Assume mean of x is subtracted



The sample covariance matrix; **R**

Called $\sigma^2_{\ w}$ on some slides

Max variance ↔ min projection residuals

Single sample

Projection onto w, assuming |w|=1

$$\begin{aligned} ||\vec{x_{i}} - (\vec{w} \cdot \vec{x_{i}})\vec{w}||^{2} &= (\vec{x_{i}} - (\vec{w} \cdot \vec{x_{i}})\vec{w}) \cdot (\vec{x_{i}} - (\vec{w} \cdot \vec{x_{i}})\vec{w}) \\ &= \vec{x_{i}} \cdot \vec{x_{i}} - \vec{x_{i}} \cdot (\vec{w} \cdot \vec{x_{i}})\vec{w} \\ &- (\vec{w} \cdot \vec{x_{i}})\vec{w} \cdot \vec{x_{i}} + (\vec{w} \cdot \vec{x_{i}})\vec{w} \cdot (\vec{w} \cdot \vec{x_{i}})\vec{w} \end{aligned}$$

$$= ||\vec{x_{i}}||^{2} - 2(\vec{w} \cdot \vec{x_{i}})^{2} + (\vec{w} \cdot \vec{x_{i}})^{2}\vec{w} \cdot \vec{w}$$

$$= \vec{x_{i}} \cdot \vec{x_{i}} - (\vec{w} \cdot \vec{x_{i}})^{2}$$

All n samples (not dimensions)

 $MSE(\vec{w}) = \frac{1}{n} \left(\sum_{i=1}^{n} ||\vec{x_i}||^2 - \sum_{i=1}^{n} (\vec{w} \cdot \vec{x_i})^2 \right)$

Indie of w

 $\sigma_{\rm w}^2$

 $\mathbf{w} \cdot \mathbf{w} = 1$

6

2014.03.19 INF 5300

Maximizing variance of y₁

$$\mathcal{L}(\mathbf{w}, \lambda) \equiv \sigma_{\mathbf{w}}^2 - \lambda(\mathbf{w}^T \mathbf{w} - 1)$$

Lagrangian function for maximizing σ_w^2 with the constraint $\mathbf{w}^T\mathbf{w}=1$

$$\frac{\partial L}{\partial \lambda} = \mathbf{w}^T \mathbf{w} - 1$$

$$\frac{\partial L}{\partial L} = 2\mathbf{R}\mathbf{w} - 2\lambda\mathbf{w}$$

↓ Equating zero

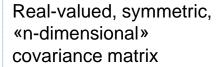
Unfamiliar with Lagrangian multipliers? You should look it up – very useful!

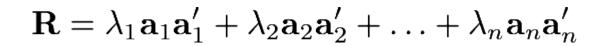
$$\mathbf{w}^T \mathbf{w} = 1$$
$$R\mathbf{w} = \lambda \mathbf{w}$$

The maximizing **w** is an eigenvector of R!

And $\sigma_{w}^{2}=\lambda!$ [Why?]

Eigenvectors of covariance matrices





Eigenvalue (let's say largest)

Eigenvector corresponding to λ₁

Smallest eigenvalue

 $\mathbf{a}^{\mathsf{T}}_{i}\mathbf{a}_{i} = 0 \text{ for } i \neq j$

Remember: λ_i =var of $\mathbf{x}^T \mathbf{a}_i$

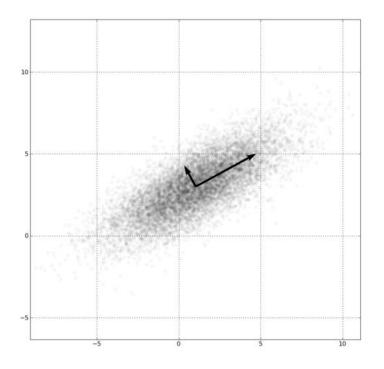
Variance of multiple variables

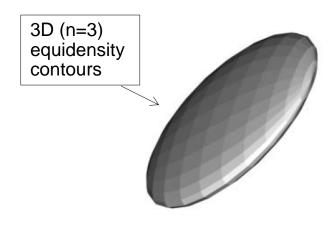
$$\sigma_{y_1+y_2}^2 = \frac{1}{N} \sum_i (\mathbf{w}_1^T \mathbf{x}_i + \mathbf{w}_2^T \mathbf{x}_i)^2 = \dots = \mathbf{w}_1^T \mathbf{R} \mathbf{w}_1 + \mathbf{w}_2^T \mathbf{R} \mathbf{w}_2 + 2 \mathbf{w}_1^T \mathbf{R} \mathbf{w}_2$$

=0 if y_1 and y_2 are uncorrelated, e.g. if \mathbf{w}_1 and \mathbf{w}_2 are eigenvectors of \mathbf{R} $\mathbf{a}^\mathsf{T}_i \mathbf{R} \mathbf{a}_i = 0$ for $i \neq j$

- If the weight-vectors yield uncorrelated features, their combined variance is the sum of each one's
- If \mathbf{w}_1 is the principle eigenvector, which \mathbf{w}_2 giving an uncorelated feature would you choose to maximize σ^2_{v1+v2} ?
- Say \mathbf{w}_1 and \mathbf{w}_2 are the two principle eigenvectors of \mathbf{R} on the previous slide; what ratio of the total variance would they have?

Example of distributions and eigenvectors





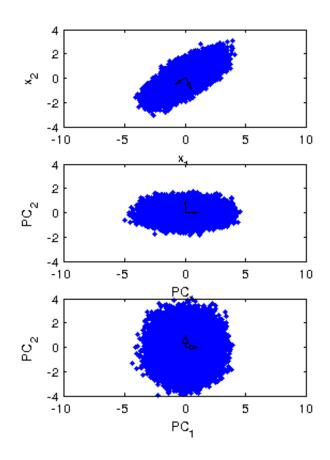
Principal component transform (PCA)

- Place the m «principle» eigenvectors (the ones with the largest eigenvalues) along the columns of A
- Then the transform $\mathbf{y} = \mathbf{A}^T \mathbf{x}$ gives you the m first principle components
- The *m*-dimensional y
 - have uncorrelated elements
 - retains as much variance as possible
 - gives the best (in the mean-square sense) description of the original data (through the «image»/projection/reconstruction Ay)

Note: The eigenvectors themselves can often give interesting information

PCA is also known as Karhunen-Loeve transform

PCA transform as a rotation



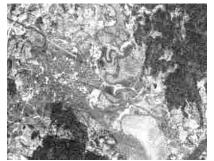
If we use all eigenvectors in the transform, $\mathbf{y} = \mathbf{A}^t \mathbf{x}$, we simply rotate our data so that our new features are uncorrelated, i.e., $cov(\mathbf{y})$ is a diagonal matrix.

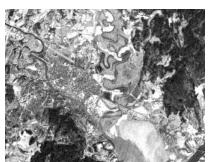
If we as a next step scale each feature by their σ , $\mathbf{y} = \mathbf{D}^{(-1/2)}\mathbf{A}^{\mathsf{t}}\mathbf{x}$, where \mathbf{D} is a diagonal matrix of eigenvalues (i.e., variances), we get $\operatorname{cov}(\mathbf{y}) = \mathbf{I}$. We say that we have «whitened» the data.

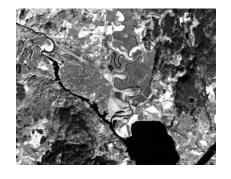
PCA and multiband images

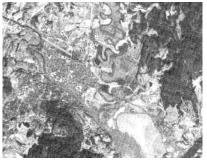
- We can compute the principal component transform for an image with n bands
- Let X be an //xn matrix having a row for each image sample
- Covariance matrix $R = \frac{1}{N}X^TX$
- Place the (sorted) eigenvectors along the columns of A
- Y=XA will then contain the image samples, but most of the variance is in the bands with the lowest index (corresponding to the largest eigenvalues)

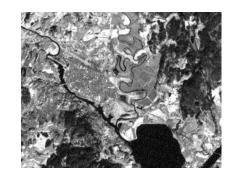
PCA example – original image











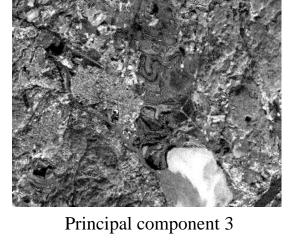
- Satellite image from Kjeller
- 6 spectral bands with different wavelengths

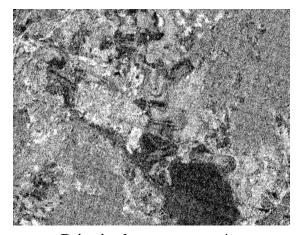
1	Blue	0.45-0.52	Max. penetration of water
2	Green	0.52-0.60	Vegetation and chlorophyll
3	Red	0.63-0.69	Vegetation type
4	Near-IR	0.76-0.90	Biomass
5	Mid-IR	1.55-1.75	Moisture/water content in vegetation/soil
7	Mid-IR	2.08-2.35	Minerals

Principal component images

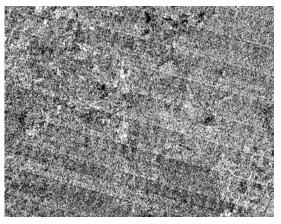
Principal component 1

Principal component 2

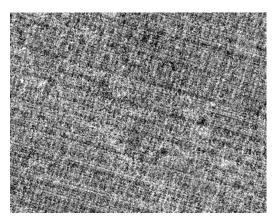




Principal component 4



Principal component 5

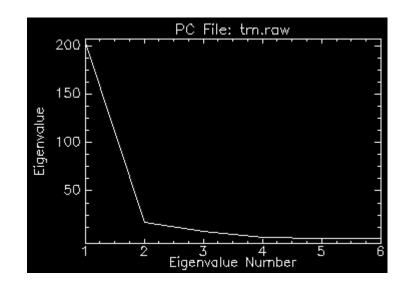


Principal component 6

Example: Inspecting the eigenvalues

The mean-square representation error we get with m of the N PCA-components is given as

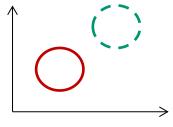
$$E[||x - \hat{x}||^2] = \sum_{i=1}^{N-1} \lambda_i - \sum_{i=1}^{m} \lambda_i = \sum_{i=m}^{N-1} \lambda_i$$



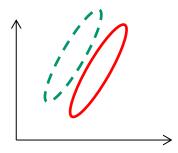
Plotting λ_i will give indications on how many features are needed for representation

PCA and classification

- Reduce overfitting by detecting directions/components without any/very little variance
- Sometimes high variation means useful features for classification:

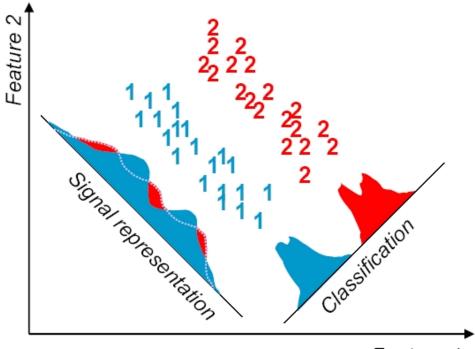


.. and sometimes not:



Signal representation vs classification

- Principal components analysis (PCA)
 - Signal representation, unsupervised
 - Minimize the mean square representation error
- Linear discriminant analysis (LDA)
 - Classification, supervised
 - Maximize the distance between the classes

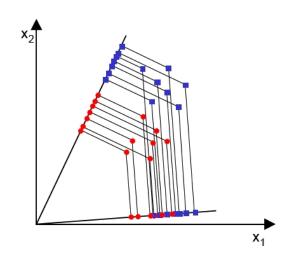


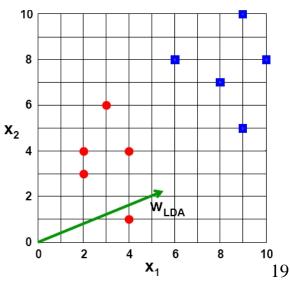
Feature 1

Fisher's linear discriminant

Goal:

- Reduce dimension while preserving class discriminatory information
- Strategy (2 classes):
 - We have a set of samples $x = \{x_1, x_2, ..., x_n\}$ where n_1 belong to class ω_1 and the rest n_2 to class ω_2 . Obtain a scalar value by projecting x onto a line y: $y = w^T x$
 - Challenge: find w that maximizes the separability of the classes

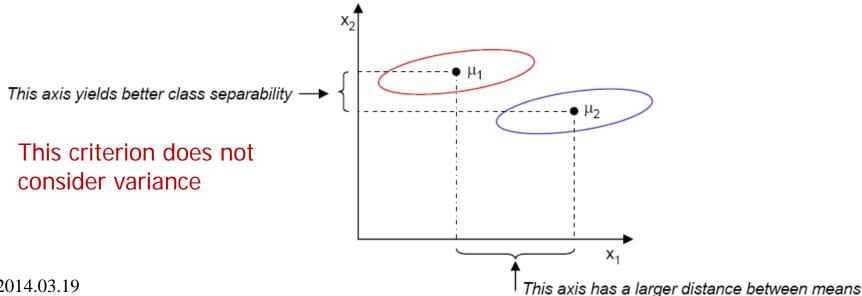




2014.03.19 INF 5300 x₁ 1

A simple criterion function: 2 classes

- To find a good projection vector, we need to define a measure of separation between the projections. This will be the criterion function J(w)
- The mean vector of each class in the spaces spanned by x and y are $\mu_i = \frac{1}{n_i} \sum_{x \in \omega_i} x$ $\tilde{\mu}_i = \frac{1}{n_i} \sum_{y \in \omega_i} y = \frac{1}{n_i} \sum_{x \in \omega_i} w^T x = w^T \mu_i$
- A naive choice would be projected mean difference, $J(w) = |\tilde{\mu}_1 \tilde{\mu}_2|^2$



2014.03.19

A criterion function including variance: 2 classes

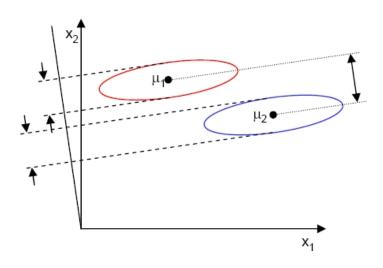
- Fisher's solution: Maximize a function that represents the difference between the means, scaled by a measure of the within class scatter
- Define classwise scatter (similar to variance)

$$\tilde{s}_i^2 = \sum_{y \in \omega_i} (y - \tilde{\mu}_i)^2$$

- $\tilde{s}_1^2 + \tilde{s}_2^2$ is within class scatter
- Fisher's criterion is then

$$J(\mathbf{w}) = \frac{|\tilde{\mu}_1 - \tilde{\mu}_2|^2}{\tilde{s}_1^2 + \tilde{s}_2^2}$$

 We look for a projection where examples from the same class are close to each other, while at the same time projected mean values are as far apart as possible



Scatter matrices – M classes

Within-class scatter matrix:

$$S_w = \sum_{i=1}^M P(\omega_i) S_i$$

$$S_i = E[(x - \mu_i)(x - \mu_i)_T]$$

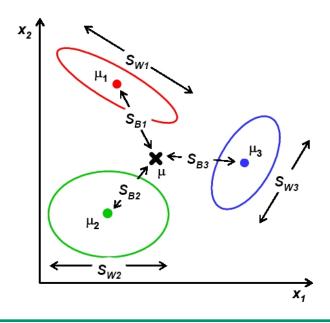
Weighted average of each class' sample covariance matrix

Between-class scatter matrix:

$$S_b = \sum_{i=1}^{M} P(\omega_i) (\mu_i - \mu) (\mu_i - \mu)^T$$

$$\mu = \sum_{i=1}^{M} \mu_i$$

Sample covariance matrix for the means

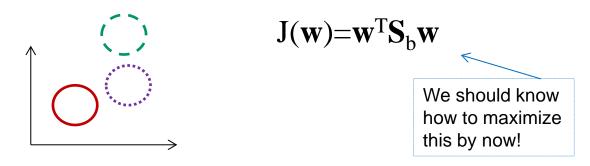


Fisher criterion in terms of within-class and between-class scatter matrices:

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_b \mathbf{w}}{\mathbf{w}^T \mathbf{S}_w \mathbf{w}}$$

Multiple classes, $S_w = \sigma^2 I$

• If $S_w = \sigma^2 I$, the denominator in J(w) does not depend on $w \rightarrow$ Criterion function depeds on the spread of the means (S_b) only:



- Weight-vector giving maximum separability is given by principal eigenvector of $\boldsymbol{S}_{\text{b}}$
 - Second best (and orthogonal to first) by next-to-principal
 - ... etc. for higher dimensional settings
 - until a maximum of M-1 dimensions (number of classes minus one) [If classes are «isotropically» Gaussian distributed, all discriminatory information is in this subspace!]

General S_w I/II

- We saw that $S_w = I$ gave Fisher criterion independent of S_w , and only dependent on S_b
- We can get there by «whitening» the data before applying the Fisher criterion
 - Whitening data by rotation and scaling -> No general loss as distribution overlap does not change
- We must find $y = A^Tx$ that yields $S_{wy} = I$
 - We have seen that PCA gives uncorrelated data, per-feature scaling can give unit variance per feature:
 - $\mathbf{y} = \mathbf{D}^{-1/2} \mathbf{A}^{\mathsf{T}} \mathbf{x}$, where \mathbf{A} has eigenvectors of \mathbf{S}_{w} as columns, and \mathbf{D} is a diagonal matrix with corresponding eigenvalues

$$\mathbf{S}_{w_y} = \frac{1}{N} \sum_i (\mathbf{D}^{-1/2} \mathbf{A}^T \mathbf{x}_i) (\mathbf{D}^{-1/2} \mathbf{A}^T \mathbf{x}_i)^T = \mathbf{D}^{-1/2} \mathbf{A}^T \mathbf{S}_w \mathbf{A} \mathbf{D}^{-1/2} = \mathbf{D}^{-1/2} \mathbf{D} \mathbf{D}^{-1/2} = \mathbf{I}$$

General S_w II/II

- Let $\mathbf{B} = \mathbf{D}^{-1/2} \mathbf{A}^{\mathsf{T}}$ (the whitening transform)
- **S**_b becomes after whitening step:

$$\mathbf{S}_{\mathsf{by}} = \mathbf{B} \mathbf{S}_{\mathsf{b}} \mathbf{B}^{\mathsf{T}}$$

- Ignoring the denominator (which is now independent of w), we get
 - $J_{y}(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{S}_{by} \mathbf{w} = \mathbf{w}^{\mathsf{T}} \mathbf{B} \mathbf{S}_{b} \mathbf{B}^{\mathsf{T}} \mathbf{w}$
- The weight-vectors, w*, maximizing separation are now given by the principal eigenvectors of BS_bB^T (in the whitened space)

• In the original space, $\mathbf{w} = \mathbf{B}^{\mathsf{T}}\mathbf{w}^* = \mathbf{A}\mathbf{D}^{-1/2}\mathbf{w}^*$

Set $J_v(\mathbf{w}^*)=J(\mathbf{w})$

to see this

Solving Fisher more directly

You get the same solution by solving more directly

$$\operatorname{argmax}_{\mathbf{w}} \quad J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_b \mathbf{w}}{\mathbf{w}^T \mathbf{S}_w \mathbf{w}}$$

The solution is given by the principal eigenvector of

$$\mathbf{S}_{\mathrm{w}}^{-1}\mathbf{S}_{\mathrm{b}}$$

The following solutions (orthogonal in S_{w,} i.e., w_i^TS_ww_j=0, for i≠j) are the next principal eigenvectors

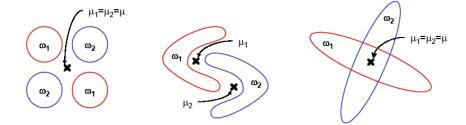
Note that the obtained ws are identical (up to scaling) to those from the two-step procedure from the previous slides

Comments on Fisher's discriminant

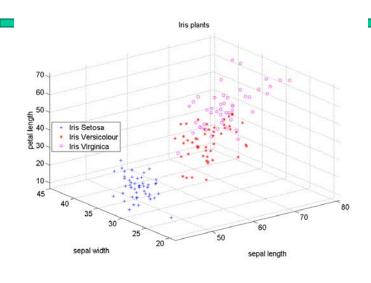
- In general, projection of the original feature vector to a lower dimensional space is associated with some loss of information
 - Keeping all M-1 dimensions gives you no reduction in classification performance for a Gaussian classifier with equal class-covariance matrices (LDA)
- Although the projection is optimal with respect to J, J might not be a good criterion to optimize for a given data set / classifier
- Minimizing J is not equivalent to minimizing the classification error

Limitations of Fisher's discriminant

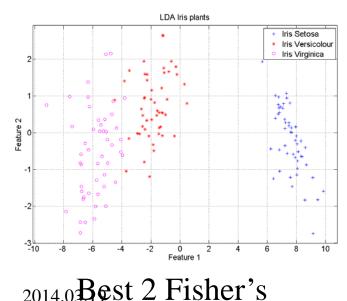
- It produces at most M-1 feature projections
- It will fail when the discriminatory information is not in the mean but in the variance of the data



Fisher's discriminant example



Original data



INF 5300

Best 2 PCA

Summary

- PCA (unsupervised)
 - Max variance <-> min projection error
 - Eigenvectors of sample cov.mat. / scatter matrix
- Fisher's linear discriminant (supervised)
 - Maximizes spread of means while minimizing intra-class spread
 - S_{wy}=I and «whitening of data»
 - Eigenvectors of S_w⁻¹S_b
 - At most nClasses-1 features
 - Limitations

Literature on pattern recognition

- A review on statistical pattern recognition (still good thirteen years later):
 - A. Jain, R. Duin and J. Mao: Statistical pattern recognition: a review, IEEE Trans.
 Pattern analysis and Machine Intelligence, vol. 22, no. 1, January 2001, pp. 4--
- Classical PR-books
 - R. Duda, P. Hart and D. Stork, Pattern Classification, 2. ed. Wiley, 2001
 - B. Ripley, Pattern Recognition and Neural Networks, Cambridge Press, 1996.
 - S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, 2006.