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Linear feature transforms

• Linear feature transforms

• Principal component analysis (PCA)

• Fisher’s linear discriminant analysis

Curriculum: See links to pdfs on course page.
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Linear feature transforms

• We create new features by computing linear 
combinations of the existing features, x1,x2,..xn:
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• In matrix notation y = ATx

• If y has fewer elements than x, we get a feature 
reduction

2014.03.19

Visualizing the weights in 2D/3D
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a1 Note on naming: In the 
slides, we often use a
and w interchangeably

Variance of single y1 feature
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Variance of y1

• Assume mean of x is subtracted
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Called σ2
w on some 

slides

y1

The sample covariance matrix; R

Max variance ↔ min projection residuals
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Projection onto w, assuming |w|=1
Single sample

All n samples
(not dimensions)

σ2
w

Indie of w

w·w=1

«yi»

Maximizing variance of y1
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RR

R
The maximizing w is an 
eigenvector of R!

And σ2
w=λ! [Why?]

Lagrangian function for 
maximizing σ2

w with the 
constraint wTw=1

Equating zero

Unfamiliar with 
Lagrangian multipliers?  
You should look it up 
– very useful!

Eigenvectors of covariance matrices
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Real-valued, symmetric, 
«n-dimensional» 
covariance matrix

Eigenvector 
corresponding 
to λ1

Eigenvalue 
(let’s say 
largest)

Smallest eigenvalue

aT
iaj = 0 for i ≠ j

Remember: 
λi=var of xTai
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• If the weight-vectors yield uncorrelated features, their combined 
variance is the sum of each one’s

• If w1 is the principle eigenvector, which w2 giving an uncorelated 
feature would you choose to maximize σ2

y1+y2?
• Say w1 and w2 are the two principle eigenvectors of R on the previous 

slide; what ratio of the total variance would they have?

Variance of multiple variables
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=0 if y1 and y2 are 
uncorrelated, e.g. if 
w1 and w2 are 
eigenvectors of R

That is, on the 
previous slide
aT

iRaj = 0 for i ≠ j

Example of distributions and eigenvectors
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3D (n=3) 
equidensity
contours

Principal component transform (PCA)

• Place the m «principle» eigenvectors (the ones with the largest 
eigenvalues) along the columns of A

• Then the transform y = ATx gives you the m first principle 
components

• The m-dimensional y
– have uncorrelated elements
– retains as much variance as possible
– gives the best (in the mean-square sense) description of the 

original data (through the «image»/projection/reconstruction Ay)
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PCA is also known 
as Karhunen-Loeve 
transform

Note: The eigenvectors 
themselves can often give 
interesting information

PCA transform as a rotation
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If we use all eigenvectors 
in the transform, y = Atx, 
we simply rotate our data 
so that our new features 
are uncorrelated, i.e., 
cov(y) is a diagonal 
matrix.

If we as a next step scale 
each feature by their σ , 
y = D(-1/2)Atx, where D is 
a diagonal matrix of 
eigenvalues (i.e., 
variances), we get 
cov(y)=I.  We say that we 
have «whitened» the data.
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PCA and multiband images
• We can compute the principal component transform for an 

image with n bands

• Let X be an Nxn matrix having a row for each image sample

• Covariance matrix ࡾ ൌ ૚

ࡺ
ࢄࢀࢄ

• Place the (sorted) eigenvectors along the columns of A

• Y=XA will then contain the image samples, but most of the 
variance is in the bands with the lowest index (corresponding to 
the largest eigenvalues)
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PCA example – original image
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• Satellite image from Kjeller
• 6 spectral bands with different

wavelengths

1 Blue 0.45-0.52 Max. penetration of 
water

2 Green 0.52-0.60 Vegetation and 
chlorophyll

3 Red 0.63-0.69 Vegetation type

4 Near-IR 0.76-0.90 Biomass

5 Mid-IR 1.55-1.75 Moisture/water content
in vegetation/soil

7 Mid-IR 2.08-2.35 Minerals
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Principal component images
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Principal component 1 Principal component 2 Principal component 3 

Principal component 4 Principal component 5 Principal component 6 
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Example: Inspecting the eigenvalues
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Plotting      will give
indications on how
many features are
needed for 
representation
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The mean-square 
representation error we get with
m of the N PCA-components is 
given as
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PCA and classification

• Reduce overfitting by detecting directions/components 
without any/very little variance

• Sometimes high variation means useful features for 
classification:

• .. and sometimes not:
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Signal representation vs classification

• Principal components analysis (PCA)
– Signal representation, unsupervised
– Minimize the mean square representation 

error
• Linear discriminant analysis (LDA)

– Classification, supervised
– Maximize the distance between

the classes

2014.03.19
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Fisher’s linear discriminant

• Goal:
– Reduce dimension while preserving class

discriminatory information

• Strategy (2 classes):
– We have a set of samples x={x1, x2, …, 

xn} where n1 belong to class 1 and the
rest n2 to class 2. Obtain a scalar value
by projecting x onto a line y: y=wTx

– Challenge: find w that maximizes
the separability of the classes
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A simple criterion function: 2 classes

• To find a good projection vector, we need to define a measure of
separation between the projections . This will be the criterion
function J(w)

• The mean vector of each class in the spaces spanned by x and y are

• A naive choice would be projected mean difference, 

This criterion does not 
consider variance

2014.03.19
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A criterion function including variance: 2 classes

• Fisher’s solution: Maximize a function
that represents the difference between
the means, scaled by a measure of the
within class scatter

• Define classwise scatter (similar to 
variance)

• is within class scatter
• Fisher’s criterion is then

• We look for a projection where
examples from the same class are
close to each other, while at the same 
time projected mean values are as far 
apart as possible
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Scatter matrices – M classes
• Within-class scatter matrix:

• Between-class scatter matrix:
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Sample covariance matrix for
the means

Fisher criterion in terms of within-class 
and between-class scatter matrices:

Multiple classes, Sw = σ2I
• If Sw=σ2I, the denominator in J(w) does not depend on w -> 

Criterion function depeds on the spread of the means (Sb) only:

• Weight-vector giving maximum separability is given by principal 
eigenvector of Sb

– Second best (and orthogonal to first) by next-to-principal
– … etc. for higher dimensional settings
– … until a maximum of M-1 dimensions (number of classes minus 

one) [If classes are «isotropically» Gaussian distributed, all 
discriminatory information is in this subspace!]
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J(w)=wTSbw

We should know 
how to maximize 
this by now!

General Sw I/II
• We saw that Sw=I gave Fisher criterion independent of Sw, and 

only dependent on Sb

• We can get there by «whitening» the data before applying the 
Fisher criterion
– Whitening data by rotation and scaling -> No general loss as 

distribution overlap does not change

• We must find y=ATx that yields Swy = I
– We have seen that PCA gives uncorrelated data, per-feature scaling 

can give unit variance per feature:
– y = D-1/2ATx, where A has eigenvectors of Sw as columns, and D is 

a diagonal matrix with corresponding eigenvalues
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General Sw II/II

• Let B = D-1/2AT (the whitening transform)
• Sb becomes after whitening step:

Sby = BSbBT

• Ignoring the denominator (which is now independent 
of w), we get
– Jy(w) = wTSbyw = wTBSbBTw

• The weight-vectors, w*, maximizing separation are 
now given by the principal eigenvectors of BSbBT (in 
the whitened space)

• In the original space, w = BTw* = AD-1/2w*
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Set Jy(w*)=J(w)
to see this

Solving Fisher more directly

• You get the same solution by solving more directly

argmax w

• The solution is given by the principal eigenvector of

• The following solutions (orthogonal in Sw, i.e., 
wi

TSwwj=0, for i≠j) are the next principal 
eigenvectors
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Sw
-1Sb

Note that the obtained ws are identical (up to scaling)
to those from the two-step procedure from the previous slides
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Comments on Fisher’s discriminant

• In general, projection of the original feature vector to a lower
dimensional space is associated with some loss of information
– Keeping all M-1 dimensions gives you no reduction in classification 

performance for a Gaussian classifier with equal class-covariance matrices 
(LDA)

• Although the projection is optimal with respect to J, J might not 
be a good criterion to optimize for a given data set / classifier

• Minimizing J is not equivalent to minimizing the classification
error
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Limitations of Fisher’s discriminant

• It produces at most M-1 feature projections

• It will fail when the discriminatory information is not in the mean but in the
variance of the data
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Fisher’s discriminant example

Original data

Best 2 PCABest 2 Fisher’s2014.03.19

Summary

• PCA (unsupervised)
– Max variance <-> min projection error
– Eigenvectors of sample cov.mat. / scatter matrix

• Fisher’s linear discriminant (supervised)
– Maximizes spread of means while minimizing intra-class 

spread
– Swy=I and «whitening of data»
– Eigenvectors of Sw

-1Sb

– At most nClasses-1 features
– Limitations
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Literature on pattern recognition

• A review on statistical pattern recognition (still good 
thirteen years later):

– A. Jain, R. Duin and J. Mao: Statistical pattern recognition: a review, IEEE Trans. 
Pattern analysis and Machine Intelligence, vol. 22, no. 1, January 2001, pp. 4--

• Classical PR-books
– R. Duda, P. Hart and D. Stork, Pattern Classification, 2. ed. Wiley, 2001
– B. Ripley, Pattern Recognition and Neural Networks, Cambridge Press, 1996.
– S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, 2006.
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