
Frank Eliassen, SRL & Ifi/UiO 1

Adaptive Distributed

Software Systems

INF 5360 spring 2010

lecturer: Frank Eliassen

Frank Eliassen, SRL & Ifi/UiO 2

Literature

� Distributed Systems – Principles and Design, A.
Tanenbaum, M. Van Steen, Prentice-Hall, 2007 (chap
2.2, 2.3)

� An Architecture Based Approach to Self-Adaptive
Software,
P. Oreizy et al, IEEE Intelligent Systems, 1999

� Composing Adaptive Software, P. K. McKinley et al,
IEEE Computer, 2004.

� Achieving Self-Management via Utility Functions,
J.O. Kephart, R. Das, IEEE Internet Computing, 2007

� Self-Adaptive Software: Landscape and Research
Challenges, M. Salehie, L. Tahvildari, ACM TAAS,
2009

Frank Eliassen, SRL & Ifi/UiO 3

Motivation

� Mobility and ubiquitous
computing, Internet of Things

Car computer
Home PC

GSM

/UMTS

GSM

/UMTS

The

Internet

The

Internet

BT/

WLAN

BT/

WLAN

When handheld devices are
carried by users moving around
in ubiquitous computing
environments

� devices/sensors come and go

� network connections come and go
and QoS varies, and therefore

� services available for
use come and go

� service quality varies

� user tasks vary and are interleaved
with tasks related to movement
and social interaction

� computing resources and power
are limited

Frank Eliassen, SRL & Ifi/UiO 4

The need for self-adaptation

� In such environments applications and users will benefit a lot
from context awareness and adaptivity
� Adapt application to resource situation (battery, bandwidth, memory)

– Example: Dynamically adapt media quality (e.g., video) to available
bandwidth

� Dynamically adapt user interface to situation of user
� Adapt application to availability of devices and services in the

environment (ubiquitous services)

� The demand for applications exhibiting such properties is
accelerating
� Mobile computing
� Ubiquitous computing
� Service oriented computing
� Sensor networks

� Challenge for users, application and systems developers and
managers

� Need for self-adaptation

Frank Eliassen, SRL & Ifi/UiO 5

Preliminaries

� Definition
� Self-adaptive software modifies its own behavior in

response to changes in its operating environment [P. Oreizy
et al, 1999]

� Self-adaptive software evaluates its own behavior and
changes behavior when the evaluation indicates that it is
not accomplishing what the software is intended to do, or
when better functionality or performance is possible.
[DARPA BAA]

� Assumptions
� The software has multiple ways of accomplishing its

purpose
� The software has enough knowledge of its own construction
� The software has the capability to make effective changes

at runtime

Frank Eliassen, SRL & Ifi/UiO 6

Self-adaptive software

systems

� Automatic adaptation requires strong interplay between
system architectures and software architectures

� how to organize the components of a distributed system such
that monitoring and adjustments can be done?

� where to execute the processes that handle the adaptation?

� A common approach is to organize distributed systems
as feed-back control systems allowing automatic
adaptations to changes

� Known as autonomic computing or self-* systems

– self-*: capturing automatic adaptation in a variety of ways

– self-managing, self-healing, self-configuring, self-optimizing, etc

Frank Eliassen, SRL & Ifi/UiO 7

The feed-back control loop

The logical organization of a feedback control system [TvS]

Frank Eliassen, SRL & Ifi/UiO 8

The adaptation loop
according to [Salehie, Tahvildari, 2009]

Monitoring

sensors effectors

Detecting Deciding

Acting

Requests

Symptoms

Actions

Events

Decisions

Process

Data flow

Interface

Frank Eliassen, SRL & Ifi/UiO 9

Hierarchy of self-* properties

Self-

adaptiveness

Self-configuring Self-healing

Self-optimizing Self-protecting

Self-awareness Context-awareness

General level

Major level

Primitive level

After: [Salehie, Tahvildari, 2009]

Frank Eliassen, SRL & Ifi/UiO 10

Enabling Technologies

Domain-specific
languages, generative
programming , constraint
languages, aspect-
oriented programming, …

Frank Eliassen, SRL & Ifi/UiO 11

Some adaptation mechanisms

� Parameter tuning
� modification of variables that determine program behavior

(tuning parameters, strategy selection)

� Code (agent or component) migration
� Compositional adaptation

� the exchange of algorithmic or structural parts of the
system with ones that improve a program’s fit to its current
environment
– enables adoption of new algorithms for addressing concerns

unforeseen during original design and construction

� aspect weaving (e.g., intercept calls)
� reflection
� component-based

– add, remove, replace, recompose, redeploy, tune (through
parameters)

Frank Eliassen, SRL & Ifi/UiO 12

Aspect weaving

� Aspect oriented
programm(AOP)

– widely used approach for
handling cross cutting
concerns in modularized
software

– cross cutting concerns spans
across many modules (QoS,
security, fault tolerance)

– AOP enables separation of cross-
cutting concerns into aspects

– aspects are developed separately
and woven into the system during
compile time (more recent
approaches allows weaving
during runtime)

– pointcuts define locations in the
program where aspect code can
be woven

Frank Eliassen, SRL & Ifi/UiO 13

Reflection

� The ability of a system to reason
about itself, and possibly, alter its
own behaviour

� Introspection: the ability to
observe its own behavior

� Intercession: enables a system
or application to act on
observation from introspection and
modify its own behaviour

� Base level: the system itself
(code)

� Meta-level: self-representation
(model) of the system

� Meta-object protocol (MOP):
interface that enables systematic
introspection and intersession

Frank Eliassen, SRL & Ifi/UiO 14

Component based design

� Perspective: A software system is a
network of concurrent components
bound together by connectors

� Focus on coarse-grained components
and their interactions, and not on the
source code level

� Allows run-time rearrangement and
replacement of components and
connectors

Necessary (NOT sufficient)
mechanism for self-adaptation

Frank Eliassen, SRL & Ifi/UiO 15

Where to compose?

� Middleware layers
� Adaptable comm services
� Intercept/redirect function calls
� Open, component based

middleware, reflection
� Aspect middleware, reflection

� Application code

� Domain-specific languages
(entagled code)

� aspect weaving, composition
filters

� component-based, reflection

Frank Eliassen, SRL & Ifi/UiO 16

Classification for Software

Composition (when to compose?)

Frank Eliassen, SRL & Ifi/UiO 17

Adaptation policies

(deciding process)

� Techniques for selecting, calculating or deriving the new
configuration that fits the current system state and/or context

� Situation-action rules
� Specifies exactly what to do in each situation
� IF (RT>100msec) THEN (increase CPU by 5%)

� Goal-based
� specify desired state(s): RT < 100msec
� system responsible for calculating actions to bring system to desired

state

� Utility-based
� utility-function: ranks all feasible system states
� U(CPU)=U(fRT(CPU))

– fRT predicts RT from CPU value

� Adaptation becomes an optimization problem: determine the feasible
values of CPU for which U is maximized

� Many others from the AI community

Frank Eliassen, SRL & Ifi/UiO 18

Research challenges (1/4)
(Salehie, 2009)

� Engineering
� Requirements analysis

– How to capture stakeholders’ expectations?
– How to map from expectations to adaptation requirements and goals to be

used at runtime?

� Design issues
– How to design self-adaptive software to fullfil adaptation requirements?

Which architecture styles? Which component models? How to reengineer
legacy systems into adaptive ones?

� Implementation languages, tools, and frameworks
– Extending existing programming languages or defining new adaptation

languages?
– Adding, removing and modifying software entities at runtime (compositional

adaptation)

� Testing and assurance
– Validation of adaptive behaviour

� Evaluation and quality of adaptation
– Criteria and metrics for self-adaptive software (safety, security, cost),

comparing adaptation solutions

Frank Eliassen, SRL & Ifi/UiO 19

Research challenges (2/4)
(Salehie, 2009)

�Self-* properties

� Individual self-* properties

– self-protecting and self-healing needs more
attention

� Building multy-property self-adaptive
software

– coordinating and orchestrating more than one
self-* property in a single adaptation loop

Frank Eliassen, SRL & Ifi/UiO 20

Research challenges (3/4)
(Salehie, 2009)

� Interactions
� Policy management

– Policy translation: translate high-level goals into lower
level/local ones understandable by the system elements

– Dynamic policies and goals
• policies and goals that can be changed during the operating

phase

� Building trust
– Self-adaptive system are harder to trace for users and

stakeholders

� Interoperability
– Coordinating and orchestrating self-adaptation behaviour of

several subsystems (“systems of systems”)

Frank Eliassen, SRL & Ifi/UiO 21

Research challenges (4/4)
(Salehie, 2009)

� Adaptation process
� Monitoring challenges

– reduce cost/load of sensors
– make monitoring process adaptive: only load sensors that are

needed and unload when not needed

� Detecting challenges
– deciding which behaviours/states that are “unhealthy” and that

requires adaptation to be considered

� Deciding challenges
– dynamic adapation policies
– finding approximate or suboptimal solutions (scalability/effciendcy)
– dealing with uncertainty and incompleteness of events/information

from self and context
– correlating local and global decision making
– scalability of decision making

� Acting challenges
– satisfy constraints, safety/integrity and fault-tolerance

Frank Eliassen, SRL & Ifi/UiO 22

Key challenges (1/2)
(McKinley 2004)

�Assurance
� Automated checking of both functional and non-functional

properties of the system

� How to ensure that the system continues to execute in an
acceptable, or safe manner during the adaptation
process?

� Security
� Protecting the system from malicious entities

� How to adapt to security regimes that are part of the
context, and how to prevent the adaptation mechanism
from being exploited by would-be attackers?

Frank Eliassen, SRL & Ifi/UiO 23

Key challenges (2/2)
(McKinley 2004)

� Interoperability

� Coordinated adaptation across system layers and across
platforms

� How to integrate separately developed adaptation mechanisms?

� Decision making (when and how to adapt)

� Must adapt software while preventing damage or loss of service

� Learn about and adapt to user behaviour

� Decision making approaches including their scalability and
general applicability

� Decentralized decision making

Frank Eliassen, SRL & Ifi/UiO 24

Summary

� The need for adaptation is motivated by continuously
changing environment and user needs

� Complexity motivates the need for self-adaptation
� Organizing distributed systems as feed-back control
systems allow automatic adaptations to changes

� Compositional adaptation is the main enabling
technology

� Research challenges (Salehie): in the areas of
engineering, self-* properties, interactions, adaptation
process

� Key challenges (McKinley): assurance, security,
interoperability, decision making

