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Apertures and Arrays

» Aperture: a spatial region that transmits or receives
propagating waves.
» Array: Group of sensors combined in a discrete space
domain to produce a single output.
» To observe a wavefield at m'th sensor position, X, we
distingush:
» Fields value: f(Xn, t).
» Sensors output: yp,(t).
e.g If sensor is perfect (i.e. linear transf., infinite bandwidth,
omni-directional):

Ym(t) = k- f(¥m, ), & € R (0r C).
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Aperture function

» Our sensors gather a space-time wavefield only over a
finite area.

» Omni-directional sensors: have no directional preference.
E.g Sensors in a seismic exploration study.

» Directional sensors: have significant spatial extent.

» They spatially integrate energy over the aperture, i.e. they
focus in a particular propagation direction. E.g Parabolic
dish.

» They are described by the aperture function, w(x), which
describes:

» Spatial extent reflects size and shape
> Aperture weighting: relative weighting of the field within the
aperture (also known as shading, tapering, apodization).
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Aperture smoothing function (4 Sec.
3.1.1)

» Aperture function at & w(¢)
» Field recorded atf. f(x 5
» contribution from the area

¢ at £ for a monochromatic wave
with angular frequency w is:

w(E)f(X — & w)dd

» contribution of the full sensor

t)

2(%,0) = [aperture W) (X — € w)de.
z(X,w) = w(X) % f(X,w).
Z(k,w) = W(K)F(k,w).
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Aperture smoothing function ...

> Apejture smoothing function:
W(k) = |7 w(X)exp(jk.X)dX
> The wavenumber frequency spectrum of the field:
= [0 [2 f(%, 1) exp(jk.X — wt)dXdlt
> Assume asingle pIane wave, propagating in direction
Q. =K0/k
= (% t)=s(t—a’ - X), @ =_/c
= F(k,w) = S(w)d(k — wad®) (Sec. 2.5.1)

Wideband, Propagating
Space-Time Signal
©

This prop. wave contains energy
only along the line k = wa?® in
wavenumber-frequency space.
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Aperture smoothing function ...

> Subst. of F(k,w) = S(w)d(k — wa?) into
Z(k,w) = W(E)F(E w) gives
Z(k,w) = W(k)S(w)(k — wa®)

Z(k,w) = W(k — wd®)S(w)

> For k = wa® = Z(wa®,w) = W(0)S(w): The information
from the signal s(t) is preserved.

» For k # wa®: The information from the signal s(t) gets
filtered.
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Aperture smoothing function ...

» Linear aperture:

b(x) =1, [x| <D/2

= W(k) = 75i”k’ix/£2’/ 2

= Sidelobe at ky, ~ 2.867/D
|W(ky,| ~0.2172D =

ML ~ 5275 = 4.603
SL Y o212 =

13.3dB
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Aperture smoothing function ...

» Circular aperture:
o(x,y)=1, VX2 +y?<R
= Olky) = 501 (kyy R)

» = SL at ky, ~ 5.14/R

ML B




" Cragsical resolution

» Spatial extent of w(X) determines the resolution with which
two plane waves can be separated.

— —

» Ideally, W(k) = d(k), i.e. infinite spatial extent!

Rayleigh criterion: Two

incoherent plane waves,

propagating in two slightly

different directions, are resolved o3
if the mainlobe peak of one
aperture smoothing function
replica falls on the first zero of N A
the other aperture smoothing o
function replica, i.e. half the

mainlobe width.

IW(k )/D|
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Classical resolution ...

» Linear aperture of size D

W(ky) = Sr2/2) (= Dsinc(kyD/2)) = S sngB/)

» -3 dB width: 0_345 ~ 0.89)\/D
» -6 dB width: 6_gg5 =~ 1.21)\/D
» Zero-to-zero distance: 6y_o = 2\/D

» Circular aperture of diameter D
W(kiy) = 25272 1 (ke D/2)

» -3dB width: §_345 =~ 1.02)\/D
» -6 dB width: 0_ggs =~ 1.41X/D
» Zero-to-zero distance: 6y_g ~ 2.44\/D

» Rule-of-thumb; Angular resolution: § = /D
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Geometrical optics

» Validity: down to about a wavelength
Near field-far field transition
» dr = D?/) for a maximum phase error of \/8 over aperture

v

» f-number

» Ratio of range and aperture: f» = R/D
» Resolution

» Angular resolution: 6 = A\/D

> Azimuth resolution: u = R0 = fu A
» Depth of focus

» Aperture is focused at range R. Phase error of \/8 yields
r = +f2 ) or DOF=2f2 \ (proportional to phase error)
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Geom.Opt: Near field/Far field

crossover

| VR +x?

A

‘The differential path length A associated with a point x on the aperture and a
range R can be evaluated using simple geometry.

VR +5 -R

Rma

=X
2R

A

This differential error across the aperture is thus essentially quadratic, and can be
reduced arbitrarily be increasing R, That s, in the far field the radiation from
each point on the aperture arrives coherently,

As we move the point target closer to the aperture, the delay error increases
inversely with R until, at some crossover range R between the near field and far
field, it becomes non-negligible. We define this range R = R (rather arbitrarily)
as that for which the maximum error is

a=28

@2

@3

As the maximum error will always be associated with the ends of the aperture,
we substitute x= /2 and use A= /8 in eq. (2.2) to obtain

@4

That is, the crossover range, measured in apertures, is equal to the aperture, measured in
wavelengths.

The far field is often called the Fraunhofer region, where we can ignore the
differential phase terms associated with different propagation engths, The near
ﬁeld s ofen clle the Fresnelregion, characterzed by the (spproximatel)

to different lengths from different

aperture points,

Let us calulate the near fiedfar field crossover of  practcalulrasonic
aperture operating at a center frequency of 3.5

This might have 128 elements spaced at 4/2. The transition between the
Fraunhofer region and the Fresnel region occurs at

Re=1782mm
or almost two meters! All modern dwgnoshc ultrasonic imaging occurs in the extreme

near field. This distinguishes the discipline from many other imaging technologies
and presents a notable enguneering challonge.

(From Wright: Image Formation ..
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Geom.Opt: Near field/Far field
crossover

4

a 1

| 0 R As the maximum error will always be associated with the ends of the aperture,

| ‘we substitute x =+a/2 and use A =+4/4 in eg. (2.7) to get the angles associated
with this maximum error.

v

) O

A
2 9
% @9
‘The differential path length A between an aperture point x and the center, as our

point target moves along the circular arc, is ‘We define this angular extent as the angular resolution 6,.

A=VR'+x* ~2Rxsin6 - R

(210)
@6
‘That s, the angular resolution, measured in radians, is the inverse of the aperture,
measured in wavelengths.
Itis also convenient to define the ratio of the range and the aperture, which re-
occurs in different contexts, as the f-number.
@7
am
As in the last section, we ignore i i )
s nthe last secton e gnore the quadratic term on the basis of far field Tred around the drcular iated with 6, i simply R6,,yielding
the azimuthal resolution u,.
Destructive interference occurs when the magnitude of any differential path
length error exceeds 4/4, so we want to calculate the angular extent for which (=74 @12)
~A4sAS 24 ) That s, the azimuthal resolution, measured in wavelengths, is the f-niumber.

(From Wright: Image Formation ..
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Geom.Opt: Near field/Far field

crossover

We can bring the fa fied diffraction patten into the near ied by ocusing the
- This i done by applying compensating delays to incremental portions
figure

OFthe aperture. (in below, we show the compensating delays as
corrections to path lengv.h )
A
Foeal
a
Point
\J
Compensating Delays
4 VR + JR=T

B Focal
Rer Point

-

v
Compensating Delays

(215

216

delay between the center of the aperture and any other aperture
point x (mdudmg e compensating delays) is

A [Wz-r)’n’ —\IR’-@-X']—[(Rfr)fR]

’{v -5 ’\m (EJ}

R R
Expanding this in a two dlmenslcnal Taylor's series in terms of r/R and 3/R and
keeping the lowest order term yiels

28

The delay error across the aperture is thus seen to be essentially linear in r and

quadratic in x. x As we move closr to the aperture, the sign o the error is pastive,
ields a negative error. Similar to our analysis of the near

feld/far held croseover, we deine the depth of focus as the extent of the

incremental range r for whi

~ABSASAM8

over the aperture. Substituting x =a/2 and A=2/8 into eq. (2.18), and using
= R/a, we see that the depth of focus is bounded by

Haesan =£f2

50 the total depth of focus , is

‘That is, the one-sided depth of focus, measured in wavelengths, s the square of the -
number. Other definitions for r, can be found in the literature, based on criteria

other than the A8 differentia orror we have employed here. Let us look at the

effects of moving our point target to the edge of the depth of focus and beyond.

@17)

(218

(219)

@20

(=)

(From Wright: Image Formation .
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Ultrasound imaging

» Near field/far field transition, D=28mm, f=3.5MHz =
» A\ =1540/3.5-10°% = 0.44mm and dr = D?/R = 1782mm
» All diagnostic ultrasound imaging occurs in the extreme
near field!
» Azimuth resolution, D=28mm, f=7MHz =
» A=0.22mmand § = \/D = 0.45°,
» i.e. about 200 lines are required to scan +45°
» Depth of focus, £y = 2, f=b6MHz =
» A =0.308mm and DOF = 22\ ~ 2.5mm.

» Ultrasound requires T =2-2.5-1073/1540 = 3.2us to
travel the DOF. This is the minimum update rate for the
delays in a dynamically focused system.
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Ambiguities & Aberrations

» Aperture ambiguities N

» Due to symmetries x
» Aberrations

» Deviation in the waveform

from its intended form. )
> In optics; due to deviation of Ghes ot Phases
a lens from its ideal shape.

» More generally; Turbulence
in the medium,
inhomogeneous medium or
position errors in the \
aperture. NS~wavefronts

» Ok if small comp. to \p.
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> K represents two kind of information
1. |k| = 2x/A: No. waves per meter
2. k/|k|: the wave’s direction of prop.

» If signal have only a narrow band of spectral components,
(i.e. all = w), we can replace | k| with wy/c = 27/ Xo.
» Example: Linear array along x-axis:

. + kxDsin ¢
W(—ksin¢) = S'”@T%b
(3
W(—2rsing/xo) = W(¢) = A SN2Eshe - pr = D/

» W’(¢) = W(¢ + ), i.e. periodic!! W(k) is not!
» Often W(u,v), u=sin¢ cosf, v=sing sinf
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Co-array for continuous apertures

» c(X) = [ w(X)w(X + X)dX, X
called lag and its domain lag
space.

» Important when array
processing algorithms employ
the wave’s spatiotemporal
correlation function to
characterize the wave’s
energy.

» Fourier trangform of
c(X)(= |W(k)[?) gives a
smoothed estimate gf the
power spectrum S¢(k, w).
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Outline

Spatial sampling
Sampling in one dimension
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Periodic spatial sampling in one
dimension

» Array:
» Consists of individual sensors that sample the environment
spatially
» Each sensor could be an aperture or omni-directional
transducer
» Spatial sampling introduces some complications
(Nyquist sampling, folding, .. .)
» Question to be asked/answered:
When can f(x, ty) be reconstructed by {ym(t)}?
» f(x,t) is the continuous signal and

» {ym(t)} is a sequence of temporal signals where
ym(t) = f(md, t), d being the spatial sampling interval.
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Periodic spatial sampling in one
dimension ...

» Sampling theorem (Nyquist):
If a continuous-variable signal is band-limited to
frequencies below kg, then it can be periodically sampled
without loss of information so long as the sampling period
d<m7/kyg= X\o/2.

sk
No Aliasing
[N LN LN LN\ [\,
-47!/d Sx/d -Zn/d —n/d n/d 2n/d 3n/d 4dl/d k
S(K
( ) Aliasing
-A-‘ﬁﬁ.‘-.-
~4z/d -3n/d ~2n/d ~av/d n/d 2m/d 3md 4m/d
Figure 313 The periodic spectrum S(A) is equal to the sum of periodic replications of the
spectrum S, (k). In this case the periodic replications do not overlap because S, (k) is bandlimited
to a frequency ko < 7r/d. When the spectrum S.(k) is not bandlimited to frequencies below /d,
one period of the periodic spectrum S(£) does not equal 5. (k). This phenomenon is called aliasing.
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Periodic spatial sampling in one

dimension ...

» Periodic sampling
of
one-dimensional
signals can be
straightforwardly
extended to
multidimensional
signals.

» “Rectangular/
regular” sampling
not necessary for
multidimensional
signals.

Figure 3.14  S(k,, k,) can be interpreted as the periodic extension of S, (k. k,). When s, (x, y)
is bandlimited and the sampling intervals d, and d, are chosen small enough (as shown herc),
sc(x, y) may be reconstructed from the samples s(m. n).

Figure 3.16  Several differently shaped baseband regions %, when periodically extended in a
sistent with Cartesian sampling, completely cover the two-dimensional frequency plane.
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Regular arrays

» Assume point sources (Wiot = Warray - Wey)).
» Easy to analyze and fast algorithms available (FFT).

(] .
. .
e & o 0 o o L] 3
. o®
e 6 6 o 0 O ® . . .
® @ o 0 0 o b
e o o 0 00 .
o & & 0 0o o [
o &6 o 0 0 O .
[
Rectangular Array Very Large Array
L]
.
.
Figure 3.17 Two arrays of discrete sensors are shown. On the left, rectangular array has
periodically spaced sensors. The VLA shown on the right has power-law spaced sensors along
each arm (see Prob. 3.16).
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Regular arrays; linear array

» Consider linear array; M equally spaced ideal sensor with
inter-element spacing d along the x direction.

» The discrete aperture function, wy,.
» The discrete aperture smoothing function, W(k):

W(k) =", wpekmd

» Spatial aliasing given by d relative to M.

-1 2
> "
, LA Visible X
Region—r T
Grating ! . Grating|
Orat : <—Mla|nlabe < Tobo
o ' '
3 1 ' ' r
k= ' '
£ 4 ' i L
Sidelobes '
TR |
7 '
A
0 T T T T T
8 2 -z 0 1 21 3
d d q d d

Wavenumber k,

Figure 320 The sperture smoolhing funcion magritude (W (0 for uniform shading i pltied

for  nine-sensor egal spatial spectrum has period k = 2r/d. The visi
regi the aperture si mncum is that part for which —27/A” < k? < 2 What

might m called secondary mainlobes—those not located at the origin—are termed grating lobes.
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Grating lobes

» Given an linear array of M sensors with element spacing d.

vvyyvyy

W(k) = SHEE.
Mainlobe given by D = Md.

Gratinglobes (if any) given by d.

Maximal response for ¢ = 0. Does it exist other ¢4 with the
same maximal response?

ke =25 singg =250 = singg = £4n.

n=1: No gratinglobes for A\/d > 1,i.e. d < A

d=4x:

singg+n-1/4 = ¢4 =+14.5°,+30°, +48.6°, £90°.
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Element response
» If the elements have finite size:

We(K) = / w(K)e* X dx

— 00

» If linear array:
Continuous aperture “devided into” M parts of size d
Each single element: % — firstzero at k =2n/d
» Total response: .
Wiotal(k) = We(k) - Wa(k),
where Wj(k) is the array response when point sources are
assumed.
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Irregular arrays

» Discrete co-array function:

> C(X) = 2_(my,mp)e0 () W Wm,» Where 9(Y) denotes the set
of indices (my, my) for which X, — Xm, = X.

» 0 <c(Y) <M= c(0).

» Equals the inverse Fourier Transform of |W(k)|?
= sample spacing in the lag-domain must be small enough
to avoid aliasing in the spatial power spectrum.

» Redundant lag: The number of distinct baselines of a given
length is grater than one.
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Examples

Array Co-Array

Figure 3.22  The Haubrich array shown on the left has the co-array on the right. Because there
are no redundant baselines in the array, the co-array values are all equal to one except at the origin
(zero lag), where the co-array value is M.
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Examples ...

Amray Co-hray
. .
. . .
. . .
. . . .. .
. .
. . .. . ..
. .
. . . . .
. . .
! . . .
Circle (M=8) . . Circular Array (M=8) Circular Array (M=9)

©

9
8

w
@,
»

i 0 ?@%‘Z
> ‘gle old
@p©
e@o%@%‘

N
8

Wavenumber ky
)
o

3

Circle (M=9) e, et s \@0@@ @@Q
D o a0 e 4
. . . . . 5 10 15 20 25 30 35 5 10 15 20 25 30 35
Wavenumber ky Wavenumber ky
. . . . 0 [} . . Figure 3.25  The panels depict the Fourier Transforms of the co-arrays for the circular arrays

depicted in Fig. 3.23. The computations for the eight-sensor array are shown on the left, the
nine-sensor on the right. The spectra are plotted only over the first quadrant of wavenumber space.

¢« o e e o @ o o Peak height can be judged by the number of contours encircling the peak
« o e « o @ e o
Square (M=9)

B

Figure 323 The sensor locations for two circular arrays and a square array are shown in the left
column. The first of the circular arrays contains eight sensors; the square array and the remaining
circular armay each contain nine sensors. Their comresponding co-arrays are shown in the right
column. The area of the circles denoting co-array locations is proportional to the redundancy at
that lag. The redundancy a the origin of a co-array always equals M. Note how these regular
array geometries lead to co-arrays spanning complicated spatial regions.
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Irregular arrays

» Sparse arrays

» Underlying regular grid, all position not filled.
» Position fills to acquire a given co-array

» Non-redundant arrays with minimum number of gaps
» Maximal length redundant arrays with no gaps.

» Sparse array optimization
> Irregular arrays can give regular co-arrays ...
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Examples

» Non-redundant arrays == Minimum hole arrays == Golumb
arrays 1101, 1100101, 110010000101

» Redundant arrays == Minimum redundancy arrays
1101, 1100101, 1100100101

Array A ° Co-Array
M=6 ° 5
]
e]
-——0—0 00— + -
A
©
M=5 L o
o o o
(]
- — o -0 0> t ——
M4 ?
1 o
T ©O o O O
————0 > + t t + -
Figure 3.27 A six-sensor, filled array and its co-array are shown. Two arrays having the same
aperture are derived by successively removing sensors [rom the array. This thinning procedure
results in the depicted co-arrays. To derive the four-sensor perfect array, one must start with a
seven-sensor filled array.
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Random arrays

> W(K) = M1 gk%n (assumes unity weights)
> E[W(K)] = Y=g E[e"%] = M [ py(Xm)e’FndX =
M - oy (k)

i.e. Equals the array pattern of a continuous aperture
where the probability density function plays the same role
as the weighting function.

> var[W(k)] = E[|W(k)[?] - (E[W(k)])2
> E[|W( )|2] _ E[Zﬂ1:10 e]k.xm1 . ZZZJO ejﬂ?ymz]

= E[M 1+ Zm1.,m17ém2 e]R.)?m ’ Zmz e_jk')_(’mz]
Assumes uncorrelated x, (E[x - y] = E[x] - E[y])

= E[|W(K)|?] = M + (M? — M)| b, (K)|?
= var[W(k)] = M — M|, (k)2
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