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Apertures and Arrays

I Aperture: a spatial region that transmits or receives
propagating waves.

I Array: Group of sensors combined in a discrete space
domain to produce a single output.

I To observe a wavefield at m’th sensor position, ~xm, we
distingush:

I Fields value: f (~xm, t).
I Sensors output: ym(t).

e.g If sensor is perfect (i.e. linear transf., infinite bandwidth,
omni-directional):

ym(t) = κ · f (~xm, t), κ ∈ < (or C).



Aperture function

I Our sensors gather a space-time wavefield only over a
finite area.

I Omni-directional sensors: have no directional preference.
E.g Sensors in a seismic exploration study.

I Directional sensors: have significant spatial extent.
I They spatially integrate energy over the aperture, i.e. they

focus in a particular propagation direction. E.g Parabolic
dish.

I They are described by the aperture function, w(~x), which
describes:

I Spatial extent reflects size and shape
I Aperture weighting: relative weighting of the field within the

aperture (also known as shading, tapering, apodization).



Aperture smoothing function (6= Sec.
3.1.1)

I Aperture function at ~ξ: w(~ξ)

I Field recorded at ~ξ: f (~x − ~ξ, t)
I contribution from the area
δ~ξ at ~ξ for a monochromatic wave
with angular frequency ω is:
w(~ξ)f (~x − ~ξ, ω)d~ξ

I contribution of the full sensor
z(~x , ω) =

∫
aperture w(~ξ)f (~x − ~ξ, ω)dξ.

z(~x , ω) = w(~x) ∗ f (~x , ω).
Z (~k , ω) = W (~k)F (~k , ω).



Aperture smoothing function ...

I Aperture smoothing function:
W (~k) =

∫∞
−∞w(~x) exp(j~k .~x)d~x

I The wavenumber-frequency spectrum of the field:
F (~k , ω) =

∫∞
−∞

∫∞
−∞ f (~x , t) exp(j~k .~x − ωt)d~xdt

I Assume a single plane wave, propagating in direction
~ζ0, ~ζ0 = ~k0/k
⇒ f (~x , t) = s(t − ~α0 · ~x), ~α0 = ~ζ0/c
⇒ F (~k , ω) = S(ω)δ(~k − ω~α0) (Sec. 2.5.1)

This prop. wave contains energy
only along the line ~k = ω~α0 in
wavenumber-frequency space.



Aperture smoothing function ...

I Subst. of F (~k , ω) = S(ω)δ(~k − ω~α0) into
Z (~k , ω) = W (~k)F (~k , ω) gives

Z (~k , ω) = W (~k)S(ω)δ(~k − ω~α0)

Z (~k , ω) = W (~k − ω~α0)S(ω)

I For ~k = ω~α0 ⇒ Z (ω~α0, ω) = W (0)S(ω): The information
from the signal s(t) is preserved.

I For ~k 6= ω~α0: The information from the signal s(t) gets
filtered.



Aperture smoothing function ...

I Linear aperture:
b(x) = 1, |x | ≤ D/2

⇒W (~k) = sin kx D/2
kx/2

⇒ Sidelobe at kx0 ≈ 2.86π/D
|W (kx0 | ≈ 0.2172D ⇒
ML
SL ≈

D
0.2172 = 4.603 ∝

13.3dB
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Aperture smoothing function ...

I Circular aperture:
o(x , y) = 1,

√
x2 + y2 ≤ R

⇒ O(kxy ) = 2πR
kxy

J1(kxyR)

I ⇒ SL at kxy0
≈ 5.14/R

ML
SL ≈ 7.56 ∝ −17.57dB.



Classical resolution
I Spatial extent of w(~x) determines the resolution with which

two plane waves can be separated.
I Ideally, W (~k) = δ(~k), i.e. infinite spatial extent!

Rayleigh criterion: Two
incoherent plane waves,
propagating in two slightly
different directions, are resolved
if the mainlobe peak of one
aperture smoothing function
replica falls on the first zero of
the other aperture smoothing
function replica, i.e. half the
mainlobe width.
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Classical resolution ...

I Linear aperture of size D

W (kx ) = sin(kx D/2)
kx/2 (= Dsinc(kxD/2)) = sin(π sin θD/λ)

π sin θ/λ

I -3 dB width: θ−3dB ≈ 0.89λ/D
I -6 dB width: θ−6dB ≈ 1.21λ/D
I Zero-to-zero distance: θ0−0 = 2λ/D

I Circular aperture of diameter D

W (kxy ) = 2πD/2
kxy

J1(kxyD/2)

I -3 dB width: θ−3dB ≈ 1.02λ/D
I -6 dB width: θ−6dB ≈ 1.41λ/D
I Zero-to-zero distance: θ0−0 ≈ 2.44λ/D

I Rule-of-thumb; Angular resolution: θ = λ/D



Geometrical optics

I Validity: down to about a wavelength
I Near field-far field transition

I dR = D2/λ for a maximum phase error of λ/8 over aperture
I f-number

I Ratio of range and aperture: f# = R/D
I Resolution

I Angular resolution: θ = λ/D
I Azimuth resolution: u = Rθ = f#λ

I Depth of focus
I Aperture is focused at range R. Phase error of λ/8 yields

r = ±f 2
#λ or DOF=2f 2

#λ (proportional to phase error)



Geom.Opt: Near field/Far field
crossover

(From Wright: Image Formation ...)
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Ultrasound imaging

I Near field/far field transition, D=28mm, f=3.5MHz⇒
I λ = 1540/3.5 · 106 = 0.44mm and dR = D2/R = 1782mm
I All diagnostic ultrasound imaging occurs in the extreme

near field!
I Azimuth resolution, D=28mm, f=7MHz⇒

I λ = 0.22mm and θ = λ/D = 0.45◦,
I i.e. about 200 lines are required to scan ±45◦

I Depth of focus, f# = 2, f=5MHz⇒
I λ = 0.308mm and DOF = 2f 2

#λ ≈ 2.5mm.
I Ultrasound requires T = 2 · 2.5 · 10−3/1540 = 3.2µs to

travel the DOF. This is the minimum update rate for the
delays in a dynamically focused system.



Ambiguities & Aberrations

I Aperture ambiguities
I Due to symmetries

I Aberrations
I Deviation in the waveform

from its intended form.
I In optics; due to deviation of

a lens from its ideal shape.
I More generally; Turbulence

in the medium,
inhomogeneous medium or
position errors in the
aperture.

I Ok if small comp. to λ0.



φ ←→ ′ sin φ′

I ~k represents two kind of information
1. |~k | = 2π/λ: No. waves per meter
2. ~k/|~k |: the wave’s direction of prop.

I If signal have only a narrow band of spectral components,
(i.e. all ≈ w), we can replace |k | with w0/c = 2π/λ0.

I Example: Linear array along x-axis:
W (−k sinφ) =

sin kx D sin φ
2

kx sin φ
2

m
W (−2π sinφ/λ0) = W ′′(φ) = λ0

sin D′π sinφ
π sinφ , D′ = D/λ0

I W ′′(φ) = W ′′(φ+ π), i.e. periodic!! W (k) is not!
I Often W (u, v), u = sinφ cos θ, v = sinφ sin θ



Co-array for continuous apertures

I c(~χ) ≡
∫

w(~x)w(~x + ~χ)d~x , ~χ
called lag and its domain lag
space.

I Important when array
processing algorithms employ
the wave’s spatiotemporal
correlation function to
characterize the wave’s
energy.

I Fourier transform of
c(~χ)(= |W (~k)|2) gives a
smoothed estimate of the
power spectrum Sf (~k ,w).
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Periodic spatial sampling in one
dimension

I Array:
I Consists of individual sensors that sample the environment

spatially
I Each sensor could be an aperture or omni-directional

transducer
I Spatial sampling introduces some complications

(Nyquist sampling, folding, . . .)
I Question to be asked/answered:

When can f (x , t0) be reconstructed by {ym(to)}?
I f (x , t) is the continuous signal and
I {ym(t)} is a sequence of temporal signals where

ym(t) = f (md , t), d being the spatial sampling interval.



Periodic spatial sampling in one
dimension ...

I Sampling theorem (Nyquist):
If a continuous-variable signal is band-limited to
frequencies below k0, then it can be periodically sampled
without loss of information so long as the sampling period
d ≤ π/k0 = λ0/2.



Periodic spatial sampling in one
dimension ...

I Periodic sampling
of
one-dimensional
signals can be
straightforwardly
extended to
multidimensional
signals.

I “Rectangular /
regular” sampling
not necessary for
multidimensional
signals.
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Regular arrays

I Assume point sources (Wtot = Warray ·Wel)).
I Easy to analyze and fast algorithms available (FFT).



Regular arrays; linear array

I Consider linear array; M equally spaced ideal sensor with
inter-element spacing d along the x direction.

I The discrete aperture function, wm.
I The discrete aperture smoothing function, W (k):

W (k) ≡
∑

m wmekmd

I Spatial aliasing given by d relative to λ.



Grating lobes

I Given an linear array of M sensors with element spacing d .

I W (k) = sin kMd/2
sin kd/2 .

I Mainlobe given by D = Md .
I Gratinglobes (if any) given by d .
I Maximal response for φ = 0. Does it exist other φg with the

same maximal response?
kx = 2πλ sinφg ± 2πd n⇒ sinφg = ±λd n.

I n = 1: No gratinglobes for λ/d > 1, i.e. d < λ.
I d = 4λ:

sinφg ± n · 1/4⇒ φg = ±14.5◦,±30◦,±48.6◦,±90◦.



Element response

I If the elements have finite size:

We(~k) =

∫ ∞
−∞

w(~k)e
~k ·~xd~x

I If linear array:
Continuous aperture “devided into” M parts of size d
Each single element: sin(kd/2)

k/2 → first zero at k = 2π/d
I Total response:

Wtotal(
~k) = We(~k) ·Wa(~k),

where Wa(~k) is the array response when point sources are
assumed.



Irregular arrays

I Discrete co-array function:
I c(~χ) =

∑
(m1,m2)∈ϑ(~χ) wm1w

∗
m2

, where ϑ(~χ) denotes the set
of indices (m1,m2) for which ~xm2 − ~xm1 = ~χ.

I 0 ≤ c(~χ) ≤ M = c(~0).
I Equals the inverse Fourier Transform of |W (~k)|2
⇒ sample spacing in the lag-domain must be small enough
to avoid aliasing in the spatial power spectrum.

I Redundant lag: The number of distinct baselines of a given
length is grater than one.
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Irregular arrays

I Sparse arrays
I Underlying regular grid, all position not filled.
I Position fills to acquire a given co-array

I Non-redundant arrays with minimum number of gaps
I Maximal length redundant arrays with no gaps.

I Sparse array optimization
I Irregular arrays can give regular co-arrays ...



Examples

I Non-redundant arrays == Minimum hole arrays == Golumb
arrays 1101, 1100101, 110010000101

I Redundant arrays == Minimum redundancy arrays
1101, 1100101, 1100100101



Random arrays

I W (~k) =
∑M−1

m=0 e~k ·~xm (assumes unity weights)

I E [W (~k)] =
∑M−1

m=0 E [e~k ·~xm ] = M
∫

px (~xm)e~k ·~xmd~x =

M · Φx (~k)
i.e. Equals the array pattern of a continuous aperture
where the probability density function plays the same role
as the weighting function.

I var [W (~k)] = E [|W (~k)|2]− (E [W (~k)])2

I E [|W (~k)|2] = E [
∑M−1

m1=0 e~k·~xm1 ·
∑M−1

m2=0 e−~k·~xm2 ]

= E [M · 1 +
∑

m1,m1 6=m2
e~k·~xm1 ·

∑
m2

e−~k·~xm2 ]
Assumes uncorrelated xm (E [x · y ] = E [x ] · E [y ])
⇒ E [|W (~k)|2] = M + (M2 −M)|Φx (~k)|2

⇒ var [W (~k)] = M −M|Φx (~k)|2


	Apertures and Arrays
	Finite Continuous Apetrures
	Apertures and Arrays
	Aperture function
	Classical resolution
	Geometrical optics
	Ambiguities & Aberrations

	Spatial sampling
	Sampling in one dimension

	Arrays of discrete sensors
	Regular arrays
	Grating lobes
	Element response
	Irregular arrays



