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Overview

The MVDR beamformer: performance and behavior.

Generalized Sidelobe Canceller reformulation.

Implementation of the GSC.

Beamspace interpretation of the GSC.

Reduced complexity of beamspace MVDR.
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Repetition: MVDR Beamforming 1

Model: Signal, (spatially white) noise, and interference for M-element array

~x = A~d + ~n,E
{
~x~xH

}
= Rs + Rn,Rs = |A|2 ~d~dH ,Rn = Ri + σ2

w I (1)

For spatially white noise only, the DAS beamformer is optimal (in the sense of
minimum noise power in output):

yDAS = ~wH
DAS~x for ~wDAS =

1
M
~d (2)

For spatially non-white interference, the Minimum Variance beamformer
minimizes interference-plus-noise power in the beamformer output:

~wmv = argmin~wE
{∣∣∣~wH~x

∣∣∣2} = argmin~w ~w
HR~w (3)

In other words:

E
{∣∣∣~wH

MV~n
∣∣∣2} ≤ E

{∣∣∣~wH~n
∣∣∣2} for all weight vectors ~w (4)

Note: This is actually minimum power, not minimum variance. Subtle
difference, theoretical equivalence. Exchange R for Rn...
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Repetition: MVDR Beamforming 2

MV weight vector for the case of one single interfering source with power σ2
i

and propagation vector ~di :

~wMV =
ΛM
σ2

w

(
~wdas,s − ρsi

Mσ2
i

σ2
w + Mσ2

i
~wdas,i

)
for ~wdas,s =

~vs

M
, ~wdas,i =

~vi

M
(5)

Interpretation: DAS beamformer steered towards signal minus (scaled)
DAS beamformer steered towards interference.
Scaling depends on INR, i.e. σ2

i
σ2

w
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Generalized Sidelobe Canceller

Constrained minimization is sometimes difficult to implement and analyze.

However: MVDR can be reformulated as unconstrained minimization.

First suggested by Griffiths and Jim (1982) as an alternative
implementation of Frosts Linearly Constrained MV (LCMV) beamformer
(1972).

This implementation is usually referred to as the Griffiths-Jim beamformer
or the GSC.

Given a matrix B ∈ CM,M−1 such that ~dHB = ~0. Then the constrained
optimization problem:

min
~w
~wHR~w s.t. ~wH~d = 1 (6)

is identical to the unconstrained optimization problem:

min
~β

(
1
M
~d − B~β)HR(

1
M
~d − B~β) (7)

with solution:
~β =

(
BHRB

)−1
BHR

~d
M

(8)
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GSC Implementation

From now on: Assume ~d = ~1, i.e. signal arriving from broadside.

Can be implemented as a transversal adaptive filter (using e.g. LMS or
RLS algorithm).

Looks like a Wiener filter, in that it subtracts adaptively filtered noise from
desired signal...

...however, it does not produce MMSE output.

Note: Sensitive to signal-interference correlation, just like MVDR.
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Fig. 4. Generalized  sidelobe  canceling form of linearly  constrained 
adaptive  array  processing  algorithm. 

fixed  nonadaptive  coefficients. In  typical applications the 
weights W, are chosen so as to  trade off the relationship be- 
tween array beamwidth and average sidelobe level [ l l ] .  
(One widely used method employs Chebyshev polynomials 
to find  the W,.) For  the purpose of this  paper, however,  any 
method can be used to  choose the weights as the  performance 
of the overall beamformer will be characterized  in terms 
of the specific values chosen. (All wci are assumed nonzero.) 
In order to simplify notation  the coefficients in w, are  nor- 
miriized to have a  sum of unity.  That is 

W,T1= 1 

The signal y,’(k)  is  obtained by filtering y,(k) and  the  FIR 
operator containing the constraint valuesf(Z), 

K 

Y ,‘(IC) = r(k - 0. (25)  
I=-K  

The  lower  path in Fig. 4 is the sidelobe canceling path. 
It consists of a matrix preprocessor W, followed  by  a  set of 
tapped-delay lines, each  containing 2K 4- 1 weights. The pur- 
pose of W, is to block the desired signal s(k) from  the lower 
path. Since s (k )  is  common to each of the steered  sensor 
outputs  (1) blocking is ensured if the rows of W ,  sum up  to 
zero. Specificallyif  X‘(k)  is used to  denote  the  set of signals 
at  the  output of W,, then 

X’(k) = FJ(k). (26) 

In addition, if bmT is used to represent the  mth row of F,, 
we require that  the b, satisfy 

bmT1 = 0, for all m, (27)  

and that  the b, are linearly independent. As a  result X‘(k) 
can have at most M - 1 linearly&dependent  components. 
Equivalently, the row dimension of W, must be M - 1 or less. 

The lower path of the generalized sidelobe canceler gen- 
erates a scalar output  y~ (k) as the sum of delayed and weighted 
elements of X’(k). Following the  notation used to describe 
the linearly  constrained beamformer, 

K 

I= -K 

where X‘ and A’ are the M - 1 dimensional signal and coeffi- 
cient vectors. 

The overall output of the generalized sidelobe canceling 
structure y ( k )  is 

Because y ~ ( k )  contains  no desired signal terms, the response 
of the processor to  the desired signal s(k)l is that  produced 
only  by y,‘(k) .  Thus  from (22)-(25) the  output  due to the 
presence of only the desired signal satisfies the  constraint 
defined  by (9), regardless of W,. In  addition, since y A ( k )  
contains only noise and interference  terms, finding the  set of 
filter  coefficients Al‘(k) which  minimize the power contained 
in y ( k )  is equivalent to finding the minimum  variance, lin- 
early constrained  beamformer. The unconstrained least-mean- 
square (LMS) algorithm [ 121 can be employed to  adapt  the 
filter  coefficients to  the desired solution, 

The  step size 1-1 is normalized by the  total power  contained in 
the X‘(k - 2 )  using methods analogous to those described 
above . 

The algorithm  in (30), together with conditions (24)  and 
(27),  completely  defines the  operation of the generalized side- 
lobe canceling structure. Although it is not obvious, this 
structure can provide exactly  the same filtering operation as 
the constrained beamformer in Fig. 3, which uses Frost’s 
algorithm. In  addition, it can also provide fiitering operations 
which are not  the same as Frost’s procedure.  The key lies 
with the  structure of the blocking matr& W, and the conven-. 
tional beamformer W,. If the  rows of W ,  are orthogonal  (in 
addition to satisfying (27)) and if all conventional beamformer 
weights equal  l/M,  then Frost’s method is obtained. Non- 
Orthogonal rows and/or  other conventional  beamformers 
produce a  processor having the same steady-state performance 
in  a stationary  environment,  but  one which uses a different 
adaptive trajectory. 

The generalized-sidelobe canceler separates out  the con- 
straint as element W, and an  FIR  filter.  In  addition, it provides 
a  conventional  beamformer as an integral portion of its struc- 
ture. Coefficient adaptation is reduced to its simplest possible 
form: the unconstrained LMS algorithm. 

Relationship with Linearly Constrained Beamforming 

> 

The structure of the generalized sidelobe canceler can 
readily be related to the adaptive linearly constrained beam- 
former. We begin by  defining an invertible M X llrl matrix T as 

The inverse of T i s  guaranteed for_Wc and z, satisfying (24) 
and (27). In  addition,  the  product T1 is a simple unit  vector, 

T1 = [ 1, 0, 0, -., 01 T .  (32) 

Multiplying Frost’s algorithm  by this  invertiblg  transformation 
yields 

Bl(k + 1) = B i k )  + py(k)[q,(k - Z)T1- TX(k - I ) ]  
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GSC Interpretation: Beamspace

Blocking matrix B suggested by Griffiths and Jim:

B =


1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
... · · · 0 0

0 0 0 0 · · · 1 −1

 (9)

What signals are processed by the lower branch of the GSC?

x ′m = xm − xm+1 for m = 0, 1, · · · ,M − 2 (10)

Two-element endfire “beams”. Good for broadband; broadside nulling for all
frequencies.
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GSC Interpretation: Beamspace

D =
1
M

[
~d0, · · · , ~dM−1

]
,
[
~dm

]
n

= e j 2πm
M n (11)

Special case: ULA with DFT matrix B = D without first column
(~d0 = ~wDAS for broadside arrival).
Invertible transformation: DHD = DDH = 1

M I.
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GSC Interpretation: Beamspace

The constrained optimization problem becomes:

min
~w

E
{∣∣∣(~wHDH)(D~x)

∣∣∣2} s.t. ~wH~1 = 1

⇒ min
~wBS

E
{∣∣∣~wH

BS~xBS

∣∣∣2} = ~wH
BSRBS ~wBS s.t. ~wBS~e0 = 1 (12)

Beamspace solution:

~wBS =
R−1

BS~e0

~eH
0 R−1

BS~e0
(13)
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GSC Interpretation: Beamspace

Beamspace beamformer output:

yBS = xBS,0 +
M−1∑
m=1

w∗BS,mxBS,m (14)

Interpretation is more obvious: DAS beamformer minus weighted set of
other DAS beamformers.

Note that there is only information about the signal in xBS,0.

Certain beams xBS,m contain more information about interference than
others.

Idea: Remove those xBS,m that are expected to contain little or no
information about interference.

Result: ~xBS becomes smaller, i.e. RBS becomes smaller and easier to
invert.

Inversion of R is O(M3).

Reduced-dimension beamspace presents a way of using a priori knowledge
in the adaptive beamformer...

...but is this realistic knowledge?
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Beamspace Example: Single Beam

Try B = ~dm, base weights on single-snapshot noise cov. matrix Rn = ~n~nH :

β =
(
~dH

mRn~dm

)
~dH

mRn~wdas =
yp,dy∗p,das

|yp,d |2 +
σ2

w
M

(15)

Yields beamspace MV weight vector:

~wbs = ~wdas − β~dm (16)

Yields interference in output:

yp,bs = yp,das

(
1− |yp,d |2

|yp,d |2 +
σ2

w
M

)
(17)

Is the choice of ~dm arbitrary?

What is the impact on the white noise gain?

What is the impact of spatially white noise?
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GSC Interpretation: Beamspace

Special case: Adaptive Sidelobe Reduction (from Synthetic Aperture
Radar).

Summary: Only use xBS,m for m = 0, 1,M − 1 and set
wBS,0 = 1,wBS,1 = wBS,M−1 = α.

Complexity reduced from determining M weights to 1 weight.

Additionally, solution is on the form:

[~wASR ]m = 1 + α cos
(
2πm
M

)
(18)

which corresponds to a known family of windows (including Hamming and
Hann).
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Conclusions

GSC interpretation of MVDR beamformer yields unconstrained
optimization problem.

Unconstrained optimization problems are often easier to analyze and
implement.

Beamspace interpretation of GSC can give reduced complexity.

Example: Ultrasound imaging. Reduction from 64-dimensional element
space to 3-dimensional beamspace with similar performance. In general:
O(M)→ O(3).
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