Conventional beamforming

Sven Peter Näsholm
Department of Informatics, University of Oslo
Spring semester 2012
svenpn@ifi.uio.no

Office telephone number: +47 22840068

Slide 2: Beamforming

Chapter 4: Conventional Beamforming

- Delay-and-sum beamforming
- Space-time filtering
- Filter-and-sum beamforming
- Frequency domain beamforming
- Resolution

Chapter 7: Adaptive beamforming / Direction of Arrival (DOA) estimation

- Minimum-variance (Capon) beamformer
- Eigenvector method, MUSIC (Multiple signal classification), linear prediction

Slide 3: Norwegian Terminology / Norsk terminologi

• Beamforming: Stråleforming

• Beampattern: Strålingsdiagram

• Delay-and-sum: Forsinkelse-og-sum

Slide 4: Focusing w/ single & directional sensor

Slide 5: Single-sensor characteristics

• Geometrical pre-focusing, e.g. spherical curving or lens

- Ability to distinguish between sources (lateral resolution): governed by physical size
- Simple: processing not required for focusing
- Inflexible: focusing depth fixed

Slide 6: Array beamforming

• [Old French: areer = "to put in order"]

- Physical elements: apply delays & sometimes amplitude weights
- Flexible: May change focusing without altering of physical array
- Requires processing of recorded signals
- Allows for adaptive methods (chapter 7)
- On receive: Possible to aim @ more than one source "simultaneously"

Slide 7: Array gain example

Slide 8: Array gain example, continued

$$y_m(t) = s(t) + n_m(t)$$

$$\dots$$

$$SNR_m = \frac{\sigma_s^2}{\sigma_n^2}, \quad SNR = M \frac{\sigma_s^2}{\sigma_n^2}$$

Slide 9: Non-zero angle of arrival

Slide 10: Delay-and-sum

 $stacking \triangleq adjustment of \Delta_0 \dots \Delta_{M-1}$

Slide 11: Phase center

Slide 12: Delay-and-sum, definition

$$z(t) = \sum_{m=0}^{M-1} w_m y_m (t - \Delta_m)$$

• z(t): beamformer output

• m: element #

• M: # of elements

• w_m : amplitude weight #m

• y_m : signal @ sensor m

• Δ_m : delay of signal @ sensor m

Slide 13: Delay-and-sum example

Steering ("listening") towards source 1

Slide 14: Near-field / far-field sources

- Plane wave approaching (left): [source in far-field] \forall sensors: Propagation direction ($\triangleq \vec{\zeta}^{\circ}$): same relative to $\forall \vec{x}_m$
- Spherical wave approaching (right): [source in near-field] Propagation direction relative to sensor $m \ (\triangleq \vec{\zeta}_m^{\circ})$ differs.

 $\angle(\vec{\zeta}^{\circ} - \vec{\zeta}_{m}^{\circ})$: discrepancy between far
- & near-field @ sensorm

Slide 15: Near-field sources

 \bullet Wavefront propagation direction $\vec{\zeta_m}$ differs with distance to source

Slide 16: Near-field sources, continued

Example received signals per sensor:

Source *close* to sensors

Source further away

Slide 17: Beamforming for plane waves

Source in the far-field

• Wavefield @ aperture:

$$f(\vec{x},t) = s(t - \vec{\alpha}^{\circ} \cdot \vec{x}), \qquad \vec{\alpha}^{\circ} \triangleq \vec{\zeta}^{\circ}/c$$
: slowness

• Delay @ element: $\Delta_m = -\vec{\alpha}^{\circ} \cdot \vec{x}_m \Rightarrow$

$$z(t) = \sum_{m=0}^{M-1} w_m s(t - \Delta_m - \vec{\alpha}^{\circ} \cdot \vec{x}_m) = s(t) \sum_{m=0}^{M-1} w_m$$

• Steering direction $\vec{\zeta} \Leftrightarrow (\vec{\alpha} = \vec{\zeta}/c)$: $\Delta_m = -\vec{\alpha} \cdot \vec{x}_m \Rightarrow$

$$z(t) = \sum_{m=0}^{M-1} w_m s \left(t - (\vec{\alpha}^{\circ} - \vec{\alpha}) \cdot \vec{x}_m \right)$$

Slide 18: Beamforming for plane waves, continued

$$z(t) = \sum_{m=0}^{M-1} w_m s \left(t - (\vec{\alpha}^{\circ} - \vec{\alpha}) \cdot \vec{x}_m \right)$$

- If $\vec{\alpha} \neq \vec{\alpha}^{\circ} \Rightarrow$ mismatch $\Rightarrow y_m$ not summed constructively \forall sensors m
- Mismatch sources for incorrect $\vec{\alpha}^{\circ} \triangleq \vec{\zeta}^{\circ}/c$:
 - Assumption about $\vec{\zeta}^{\circ}$
 - Assumption about c
- If $\vec{\alpha}^{\circ}$ or c is known: Get the other by variation of c or $\vec{\alpha}$, until max energy output in z(t), e.g.: $\max_{c} \int_{-\infty}^{\infty} |z|^2 dt$

Slide 19: Linear array example

Slide 20: Linear array example, continued

Monochromatic, plane wave: $s(t-\vec{\alpha}^{\circ}\cdot\vec{x})=$ $e^{j(\omega^{\circ}t-\vec{k}^{\circ}\cdot\vec{x})}$

 \Box

• Steering delays: $\Delta_m = -\frac{\vec{k}}{\omega^{\circ}} \cdot \vec{x}_m$, & $\vec{x}_m = [x_m, 0, 0]^{\mathrm{T}} \implies$ $z(t) = e^{j\omega^{\circ}t} W(k_x - k_x^{\circ}),$

w/ Array pattern def.: $W(\vec{k}) \triangleq \sum_{m=0}^{M-1} w_m e^{j\vec{k}\cdot\vec{x}_m}$

• Uniform weights, $w_m = 1$, $\forall m \implies$

$$W(k_x - k_x^{\circ}) = \frac{\sin\left[\frac{M}{2}(k_x - k_x^{\circ})d\right]}{\sin\left[\frac{1}{2}(k_x - k_x^{\circ})d\right]}$$

Slide 21: Array pattern amplitude $|W(k_x)|$

Example: $|W(k_x)|$, for $x_m = [x_m, 0, 0]^T$

Slide 22: Beampattern amplitude $|W(\vec{k} - \vec{k}^{\circ})|$

Array steered in fixed $\vec{k} = \omega^{\circ} \vec{\alpha}^{\circ}$. Plotting $|W(\vec{k} - \vec{k}^{\circ})|$ for different \vec{k}° .

Slide 23: Example: 3 sources in different directions

Steering: $k_x = 0$

Slide 24: Example, continued

Recorded sensor signals

Slide 25: Example, continued

Delay-and-sum beamforming of each of the 3 signals. Steering: $k_x = 0$

Slide 26: Example: Microphone array

Questions

- 1. For what frequencies is the wavefield properly sampled? Assume c = 340 m/s.
- 2. Up to what frequency are the speakers considered to be in the array far-field?

П

Slide 27: Sound examples

• Single microphone

[follow link]

• Delay-and-sum, steering to speaker 1

[follow link]

• Delay-and-sum, steering to speaker 2

[follow link]

http://johanfr.at.ifi.uio.no/lydlab/

Slide 28: Beamforming for spherical waves

Single-source in array near-field:

- Maximum beamformer output \leftrightarrow a spatial location [far-field case: \leftrightarrow a propagation direction]
- $\Delta_m = f(\vec{x}_{\text{source}})$
- Adjustments of $\Delta_m \Rightarrow \text{may focus to } \vec{x} \text{ in near-field}$

Delays: $\Delta_m = (r^{\circ} - r_m^{\circ})/c$

 r° : distance from origin to source \Rightarrow delay-and-sum output:

$$\begin{split} z(t) &= \sum_{m=0}^{M-1} w_m \frac{s\left(t - r_m^{\circ}/c - [r^{\circ} - r_m^{\circ}]/c\right)}{r_m^{\circ}} \\ &= s\left(t - r^{\circ}/c\right) \sum_{m=0}^{M-1} w_m \frac{1}{r_m^{\circ}} \\ &= \underbrace{\frac{1}{r^{\circ}} s\left(t - r^{\circ}/c\right)}_{\text{spherically spreading wave received @ phase center}} \cdot \underbrace{\sum_{m=0}^{M-1} w_m \frac{r^{\circ}}{r_m^{\circ}}}_{\text{weighted sum of sensor weights}} \end{split}$$