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Slide 2: Beamforming

Chapter 4: Conventional Beamforming
e Delay-and-sum beamforming
e Space-time filtering

e Filter-and-sum beamforming

Frequency domain beamforming

Resolution

Chapter 7: Adaptive beamforming / Direction of Arrival (DOA) estimation

e Minimum-variance (Capon) beamformer

e Eigenvector method, MUSIC (Multiple signal classification), linear prediction

Slide 3: Norwegian Terminology / Norsk terminologi

e Beamforming: Strdleforming
e Beampattern: Stralingsdiagram

e Delay-and-sum: Forsinkelse-og-sum

Slide 4: Focusing w/ single & directional sensor
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Slide 5: Single-sensor characteristics

e Geometrical pre-focusing, e.g. spherical curving or lens
O

e Ability to distinguish between sources (lateral resolution): governed by physical
size

e Simple: processing not required for focusing

e Inflexible: focusing depth fixed

Slide 6: Array beamforming

e [Old French: areer = “to put in order”)

d—

Physical elements: apply delays & sometimes amplitude weights

Flexible: May change focusing without altering of physical array

e Requires processing of recorded signals

Allows for adaptive methods (chapter 7)

e On receive: Possible to aim @ more than one source “simultaneously”

Slide 7: Array gain example
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Slide 8: Array gain example, continued

Ym(t) = s(t) + nm(t)
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Slide 10: Delay-and-sum
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Slide 11: Phase center
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Slide 12: Delay-and-sum, definition
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e 2(t): beamformer output

m: element #
e M: # of elements

e w,,: amplitude weight #m

Ym: signal @ sensor m

e A,,: delay of signal @ sensor m

Slide 13: Delay-and-sum example

Steering (“listening”) towards source 1
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Slide 14: Near-field / far-field sources

e Plane wave approaching (left): [source in far-field] V sensors: Propagation direc-
tion (£ (°): same relative to V&,

e Spherical wave approaching (right): [source in near-field] Propagation direction
relative to sensor m (£ (2,) differs.

4(50 — E;;) : discrepancy between far- & near-field @ sensor m

Slide 15: Near-field sources
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e Wavefront propagation direction ¢, differs with distance to source

Slide 16: Near-field sources, continued

Example received signals per sensor:
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Slide 17: Beamforming for plane waves

Source in the far-field

n
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e Wavefield @ aperture:

f(Z,t) = s(t —a° - @), @ 2 (°/c: slowness

e Delay @ element: A, = —a° - T, =

—1

M-—1 M
Z(t) - Z wms(t — Ay —a’ 'fm) = S(t) Z Wm

m=0 =0

e Steering direction ¢ < (0_2 = g?/c): A, =—a- Ty =
M-1
Z(t) = Z Wm S (t (ao - Oé) fm)
m=0

Slide 18: Beamforming for plane waves, continued

M—-1
2(t) =Y wms (t — (@° — @) - &)

m=0
o If @ # @d° = mismatch = y,, not summed constructively V sensors m

. . —o A %
e Mismatch sources for incorrect a° = (°/c:

— Assumption about 50

— Assumption about ¢

e If @° or c is known: Get the other by variation of ¢ or &, until max energy

oo
output in z(t), e.g.: max/ |z|2dt
c
oo

Slide 19: Linear array example
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Slide 20: Linear array example, continued

Monochromatic, plane wave: s(t—a°-Z) =

el (Wot—k°-)

O
e Steering delays: A,, = fwi; Ty & Ton = [1,0,0]T =

2(t) = 27 W (ky — k2,

M-1
w/ Array pattern def.: W(k) & Wy el F-Em
m=0
e Uniform weights, w,, =1, Vm =

-nld 0 2 niMd nld
.
Example: |W (k)|, for @,, = [2n,0,0]"

d
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Slide 22: Beampattern amplitude |W (k — £°)]

Array steered in fixed k = w°@°. Plotting [W (k — k°)| for different k°.
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Slide 23: Example: 3 sources in different directions

Steering: k, =0
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Slide 24: Example, continued

Recorded sensor signals

Slide 25: Example, continued

Delay-and-sum beamforming of each of the 3 signals. Steering: k, = 0
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Slide 26: Example: Microphone array

B speaker

¢ e microphone
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Questions
1. For what frequencies is the wavefield properly sampled? Assume ¢ = 340 m/s.

2. Up to what frequency are the speakers considered to be in the array far-field?

a

Slide 27: Sound examples

e Single microphone

¢

e Delay-and-sum, steering to speaker 1

[follow link]

9

e Delay-and-sum, steering to speaker 2

[follow link]

t " [follow link]

http://johanfr.at.ifi.uio.no/lydlab/

Slide 28: Beamforming for spherical waves

Single-source in array near-field:

e Maximum beamformer output < a spatial location [far-field case: < a propagation direction]

L Am = f(fsource)

e Adjustments of A,, = may focus to & in near-field

Delays: A, = (r° —1r,) /c
r°: distance from origin to source = delay-and-sum output:
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