
DEDICATED TO EMBEDDED SOLUTIONS

DESIGN SAFE FPGA
INTERNAL CLOCK
DOMAIN CROSSINGS

ESPEN TALLAKSEN
DATA RESPONS

SCOPE

 Clock domain crossings (CDC) is probably the worst
source for serious FPGA-bugs that can make your final
product fail in fatal and mysterious ways.
 This presentation shows why this is a problem and how to handle

the most common CDC scenarios.

 Excerpt from
“FPGA development Best Practices”
(A two day Digitas course by Data Respons)

 Originally a total of 80 slides

 Removed basics, details on Metastability, Glitch
generation, FPGA re-convergence glitching, handshaking

 Reduced number of explained CDC cases and variations

 Added and modified a few slides

Design safe FPGA internal clock domain crossings 2

Design safe FPGA internal clock domain crossings 3

The worst kind of FPGA bugs

 An FPGA may fail in many different ways:
 Logic functionality

 General timing-problems (clock domain internal)

 Clock domain crossing (FPGA internal and I/O)

 Asynchronous logic

 Other: I/O characteristics and interfacing, FPGA configuration, power
supply, temperature, etc...

 Logic functionality can be verified by simulation and testing

 Internal synchronous timing can be verified by static timing analysis

 Clock domain crossing and Asynchronous logic:
 Cannot be fully verified by simulation

 Cannot be fully verified by testing (e.g. lab, system, field)

 Can only be fully verified by manual analysis
» Sometimes in combination with static timing analysis

Design safe FPGA internal clock domain crossings 4

Clock domain clk1

Clock domain clk2

FPGA Timing - Basics

Storage
element

Combinat.
logic

Storage elements: Flops, memories, latch, black-box

Timing path: From active clock edge on source element
to input on destination element plus setup-time

Clock relations, synchronization, handshake, etc…
 CDC: Clock Domain Crossing

I/O timing could be pure timing path or additional CDC – with
different timing for each external component

timing path
&

timing requirement

External
Component

clk1 clk1 clk1 clk1

clk2 clk2

timing path
&

timing req.

timing path
&

timing req.

timing path
&

timing req.

timing path
&

timing req.

External
Component

External
Component

FPGA

Async logicclk

Design safe FPGA internal clock domain crossings 5

Initial effects of a timing violation

 A violation of the setup/hold times may result in:

1. Small additional delay on Q

2. Major additional delay on Q

3. New data is not stored (keeping the old data)

4. Q temporarily reflects new data, then returns to the old

5. Q has multiple glitches before settling

6. Q has undetermined level (voltage) before settling

Meta-stability (or undetermined output or delay)

 Some FPGA providers claim to have meta-stable free
storage elements
 This means they handle some of the effects of

meta-stability. They cannot handle all.

D

C

Q

The initial effects of a timing problem may seem trivial.

They may however result in major functional problems.

The uncertainty of whether new data is stored

is actually as bad as any meta-stability.

Design safe FPGA internal clock domain crossings 6

Some results of timing violations

 Wrong data is sampled (e.g. by SW)

 Trigger-signal is missed or multiplied

 State machine enters wrong state

 State machine (or FPGA) enters illegal state

 May result in deadlock

 Counters jump to spurious value

 Words are lost or duplicated in a data flow

Design safe FPGA internal clock domain crossings 7

Consequences of CDC problems
- some real examples

 Project delays

 2 months delay due to sporadic errors in the system test

 3-4 months delay due to unstable complex interface

 1 year delay after product was “actually ready”

 More than 5 man months to debug a problem that appeared
some time after product release

 Product deficiencies – after customer release

 Communication switch with lots of bit errors

 Industrial system increasingly failing after a few years

 Customer’s application SW not working

And there are MANY more......

Design safe FPGA internal clock domain crossings 8

Motivation for proper CDC design
and manual timing analysis

 An FPGA with a timing problem
 Will not be detected by an RTL simulation

 May fail in test once in a while – for no obvious reason
» May however also pass all lab tests

 May occasionally fail in system test – for no obvious reason
» And uncertain whether SW, HW, FPGA or test is to blame

» May however also pass all system tests

 May occasionally fail in field test – for no obvious reason
» May however also pass all field tests

 May fail in field operation – for no obvious reason
» May happen for new SW, HW, FW

» May happen for different temperature, voltage, power

» May happen for FPGA #7, or for FPGAs #17 to #3472

• Is extremely expensive – increasingly per stage

• Is very time consuming

• Is bad for credibility and customer relations

Types of CDC

 Single signal CDC

 Multi-signal CDC

 Vector CDC

 Complex signal transfer. (E.g. a bus system)

 Source and destination relations

 Frequency relations

 Transfer intervals

 Handshake variations (two vs four-phase, Boolean- vs toggle-based)

 Possible CDC exceptions – to be treated in a simpler way

 Rising + falling (derived from rising)

 Aligned clock (several clocks generated from the same source)

 Derived clocks (generated from another clock)

 clock selection (mux’ing between multiple sources)

 clock enabling (gated with enable-signal before clock input)

Design safe FPGA internal clock domain crossings 9

Design safe FPGA internal clock domain crossings 10

Single signal synchronization
- with faster destination

 Always:

 Ensure stable and glitch free signal out of source domain

 For input to a faster domain:

 Two synchronization flip-flops normally recommended

 High frequencies or tight timing may require more

 May utilise both edges to reduce latency

 For input to a slower domain (or unknown frequency):

 Need handshake

Clock domain clk1
@f1

clk2

Clock domain clk2
@ f2 >> f1 (or stable source)

clk2

stable, glitch free signal

No logic

Design safe FPGA internal clock domain crossings 11

Why two flip-flops?

 Two flops – the rule of thumb for several decades…

 But, meta-stability characteristics has significantly improved
- So why isn’t a single flop sufficient?
 In fact in many cases it would be…, but

» Would require tightened timing requirements out of flop 1

» Needs tighter follow-up throughout design-phase

» Does still have a higher risk of failure – for critical applications

» Why save a flop?

 Still a good rule: Use two flip-flops for synchronization

clk2

Clock domain clk2
@ f2 >> f1

clk2

Design safe FPGA internal clock domain crossings 12

Pulse detection in destination domain

 Required when synchronized signal used as enable/trigger

 To assure single enable/trigger

 Position after 2nd synch-flop

clk2 clk2 clk2

Design safe FPGA internal clock domain crossings 13

Single asynchronous sampling
For input to (pot.) slower domain when source cannot be held

 Two main categories – depending on application

 Counting multiple fast pulses (faster than available clock periods)

 Need to count in a separate sig_a clock domain
 Handle as normal CDC between domains

 Detection of single pulse – with sufficient time between pulses,

» or multiple pulses where only first pulse is of interest

 May synchronize “immediately” – after detection
 Various solutions observed

- Some applied solutions are definitely error prone

sig_a

- Detect pulse
- Synchronize
- Generate pulse (sync’d)

Design safe FPGA internal clock domain crossings 14

 Recommended solution
 Uses no asynchronous set/reset
 Will only detect one out of multiple pulses within 3 T (clk period)

» Multiple fast pulses will require a separate clock)

 Dual edge triggering requires dual implementation

Note:

The feedback to D1 must come from Q3.
If coming from Q1, input pulses may be lost if pulsing twice (or any
even number) between rising edges of clk.

clk clk

Q1

clk
sig_a

Q2 Q3D1

Sampling a single, fast pulse
For input to (pot.) slower domain when source cannot be held

XOR

Design safe FPGA internal clock domain crossings 15

Vector CDC – Default solution

Synchronize data and trigger

Use extra delay flop in trigger path if needed for timing balancing

Register data out of source if required for stability

Clock domain clk1 @f1

Valid

DATA

Clock domain clk2 @ f2 >> f1

Registers

Design safe FPGA internal clock domain crossings 16

Vector CDC – Optimized solution

- Small combinatorial logic and fan in (3 inputs – 4 incl. synch. reset)

- No sharing of intermediate terms

Complete combinatorial logic can be handled in a single LUT

No need to synchronize data

But - what if control signals are added later – or functional update of
registers (e.g. a loadable counter)?

Clock domain clk1 @f1

Valid

DATA

Clock domain clk2 @ f2 >> f1

Registers

Flip-flops are cheap in FPGAs Always synchronize all signals

Design safe FPGA internal clock domain crossings 17

Complex CDC – with stable data

 Assume stable bus and known trigger condition

 Data and control valid for a sufficient time around trigger
(e.g. a slow bus writing to registers in a fast clock domain)

Clock domain clk1 @f1

CS

WR
ADDR
DATA

Clock domain clk2 @ f2 >> f1

Registers

DATA

ADDR

WR

CS

Design safe FPGA internal clock domain crossings 18

Complex CDC
– with stable data - for write access

 Dual flop sync is not required for data/addr/ctr in this scenario

 Derive single trigger signal
 Might have to combine in source domain
 Assure glitch-less trigger signal from source domain (e.g. directly from flop)

 Synchronize trigger signal (as for single signal synchronization)
 Use edge trigger to load synchronized data into register.

Clock domain clk1 @f1

CS

WR
ADDR
DATA

Clock domain clk2 @ f2 >> f1

Registers

DATA

ADDR

WR

CS

Design safe FPGA internal clock domain crossings 19

Possible CDC exceptions

 Related clocks may often be handled in a synchronous
or quasi synchronous manner

 Worst case they must be handled as asynchronous

 Typical related clock scenarios are:

 Using both rising and falling edges of the same clock

 “Aligned” clocks – e.g. 4 and 8 MHz, both derived from 32 MHz

 Derived clock - and its source

 Clock selection – selecting “same” or derived clock

 Clock enabling

Derived clock

 Logic clocked by a source clock and a derived clock must
sometimes be treated as two separate clock domains

 Implementation in device will depend on lots of issues

20

Some clock
generation
logic B

d1

d2

B

- Must consider architecture and coding

- Must consider FPGA technology

- Must consider synthesis + P&R tool

- Must consider constraints

- Must be ensure correct implementation

- Must document properly

- Must review

Design safe FPGA internal clock domain crossings

 May be dead simple

 May require semi asynchronous handling

clk_a

clk_b

Design safe FPGA internal clock domain crossings 21

Potential CDC bug secondary effects

 Power consumption may increase

 if more toggling/glitches

 if unintended state is reached
(e.g. bit-rate, clock-control, memory-outputs, …)

 if illegal combinations occur
(e.g. enabling 2 external chip selects for read)

 An FPGA deadlock may occur

 e.g. if entering an undefined state

 External HW may be damaged

 Temporarily or permanent

Design safe FPGA internal clock domain crossings 22

Conclusion on CDC

 Bugs sometimes result in serious product malfunction

 Bugs often result in major project delays

 Manual analysis and reviews may be time consuming

 If so – spend that time

 Documenting CDC may be time consuming

 The better reason to do it…

 Lots of designers/companies do not handle CDC properly

 They often lose magnitudes of time compared to what they
“save”

WWW.DATARESPONS.COM

