
F5 (Mot1) Motchenbacher  
(Main focus on component noise) 
 
Definition of noise: 
 Unwanted: 
Most definitions of noise focus on that it is 
unwanted like in Motchenbacher: ”Any unwanted 
disturbance that obscures or interfaces with a 
desired signal”. In general this is a describing 
characteristic with the small exception that 
randomness of noise is wanted and utilised in 
random number generators.  
 Unpredictable: 
Another important feature that one should include 
when defining noise is that it is unpredictable. In 
advance it is not possible to say what strength the 
unwanted signal will have at a specific time in the 
future. The exception is the low-frequency 
components that are present also immediately 
beforehand. But even if one can not predict 
exactly the undesirable components, one can 
describe the statistical probability and distribution 
with respect to amplitude and frequency. 
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Before Motchenbacher discusses component 
noise the book briefly discusses coupling noise 
entitled as “external noise”. 
: 
External sources: 
 Electrostatic (capacitive coupling) 
 Electromagnetic (inductive coupling) 
 AC-power/DC-power 
 Signal wires 
 radio transmitters 
 electrical storms 
 galactic radiation 
 mechanical vibrations 
May be “eliminated” through adequate 
 shielding 
 filtering 
 altering layout 
 distance 
 make parallel 
 make serial 

 change external components like adding a 
separate power supply for the front-end 
amplifiers. 
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Internal sources: 
“Noise” in this book means component noise. It 
is also entitled as “internal noise”, “true noise” 
and ”fundamental noise” 
 basic random-noise generators 
 spontaneous fluctations from the physics of the 

devices and materials that make up the 
electrical system. 

Example: 
 Thermal noise in resistors (and parasitic 
resistance in transistors, conductors, coils and 
capacitors etc.) 
 More difficult (impossible) to eliminate than 

coupling noise. However it is helpful and 
necessary to estimate the size of this noise.  
 The resolution of the sensor signal is 

typically decided by the sensor noise.  
 
Example: “Snow storm” on TV-screens 
 Main cause: Thermal noise in the input 
amplifier. 
 Not necessarily the preamplifier that 
generates most noise but typically this is where 
the noise has the greatest effect. However noise 
can also come from elsewhere. 
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Characteristics of noise 
 
While noise from the 50Hz mains can be very 
predictable, thermal noise are unpredictable when 
it comes to amplitude and phase. However we 
can in both cases find statistical characteristics 
like the RMS (root-mean-square). 
 
Gaussian noise 
Thermal noise and some other kind of noise have 
a Gaussian distribution. The figure shows the 
Gaussian distribution and what it may look like 
on an oscilloscope.  
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The Gaussian distribution describes the 
probability that the noise has a certain value at a 
given time.  
The mathematical expression for the Gauss 
distribution is: 
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Here  is the average value measured. Of all 
values this is the most probable. The function f(x) 
is a probability density function or for short: pdf. 
For typical considerations we say that the noise is 
within +/- 3 of . 

 Inside Outside 
[-,] 68% 32% 

[-2,2] 95% 5% 
[-3,3] 99.7% 0.3% 
[-4,4] 99.994% 0.006% 

In the case of noise µ is equal to 0. If we find an 
average value different from zero over some time, 
this will be something that can be identified and 
compensated in hardware or software. This 
average value is not unpredictable and hence not 
a part of what we identify as noise. 
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RMS (Root-Mean-Square): 
RMS is a general term that applies not only to the 
Gaussian distribution. The RMS-value for a 
Gaussian-distribution is equal to . 
 
RMS is defined as: 

 
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T

V
0

21
 

V(t): The signal (or noise) voltage as a function 
of time.  
T: the time we are integrating over. 
 The integral will grow with T to infinity (as long as V(t) 

=/= 0). When we divide by T, we find that the average 
slope of the integral is equal to the square of Vrms.  

 If v(t) has a cyclic behaviour we have to integrate over a 
whole number of periods for the answer to be completely 
accurate. If we do not integrate a whole number of 
periods, the last unfinished period contributes with an 
error. However this error will be relative to the 
contribution from all the whole periods. This is useful 
knowledge if one does not know the exact frequencies to 
integrate a signal over: Hence instead of integrating over a 
complete number of periods we integrate for a time that is 
many times longer than the longest expected period. A 
possible part of a period will give only a small 
contribution. 
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The RMS value can be seen as an expression of 
the effective heating effect of a signal. The RMS 
value of a random signal is the DC value that will 
give as rapid heating through a heating element in 
water as the signal itself. 
 
Example: The mains power network  
Our mains power network carry sinus voltages 
with a frequency of 50Hz. The average value is 
0V, the peak value is 310V and the RMS value 
equal to 220V. When we find the maximum 
effect in a 10A-circuit we multiply the 10A with 
the RMS voltage (220V) and achieve 2200W. 
Vrms is thus the effective "heating tension" and 
not eg. peak-voltage 
 
 
An apropos: 
Some voltmeters find the RMS value by dividing 
the RMS value by 2. This is only correct when 
the curve is a sine. In true-RMS voltmeters the 
RMS value is found according to the expression 
given ahead. 
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Examples:  

 
 (=0) Sinus Square 

(50% duty)
Triangular Gauss 

Vpeak A +/-A +/-A  
Vrms A/2 A A/3  

 
 (<>0) DC* Square 

High in a part d of the 
time 

Vpeak A +/-A A, (0) 
Vrms A A Ad 
 A A(2d-1) Ad 
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FWHM: 
 
Within some physic fields the notation Full-
Width-Half-Maximum is common.  

 
That means the width of the portion of the signal 
that has a probability that is more than half of the 
maximum value. This width is a constant scaling 
of the standard variation and can be expressed as: 

 35,22ln8 fwhm
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Thermal noise 
 Due to "Brownian" motion of charges in a 

conductor. 
 First observed by J. B. Johnson in 1927. 

Theoretically analyzed by H. Nyquist in 1928. 
Also called "Johnson noise" and "Nyquist 
noise".  

 Over time is the average voltage zero but the 
random motion of charges results in that we at 
different time points can measure voltage 
differences over the terminals. 
 

Available noise power in a conductor can be 
expressed as: fkTNt   
k: Boltzmans constant: 1.38E-23 Ws/K 
T: Temperatur in Kelvin 
f: Bandwidth of the  “measurement system” 
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Examples of Nt: 
 
We assume both of: 
 Room temperature (17C or 290K) 
 1Hz bandwidth 
 Nt =  =-204dB relative to 1W 
 

W21104 

 
In RF communication we give the noise power 
relative to 1mW and we have: 

 mm dBdBinpowerNoise 174
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-174dBm is generally called the noise floor and is 
the minimum noise level one can achieve in a 
system that operates at room temperature.  
 
(1Hz = 1Hz)  
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Basic equations  
Power:  
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Relative signal strength (decibels):  

tPW 























R

R

R

R

RU

RU

P

P

ref

ref

refrefref

log10

log10

log10log

2

2

2

























U

U

U

U

RSS

ref

ref

dB

log20

log10

10

 

 
 
   
 

F5 12



Noise Voltage:  
 
It is often easier to calculate and measure noise 
voltage power than noise power.  
 
The available noise power is the amount of power 
a resistive source can supply a noiseless resistive 
load when both resistances are equal. 
 
 
 
 
 
Method:  
Often, the load resistance is not equal to the 
source resistance. The method used is that we 
first assume that these are equal, calculates 
backward to a theoretical voltage at the source 
resistance and then use this voltage with the 
actual load resistance.  
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We make an expression where the deposed power 
on the theoretical load is expressed only by 
values in relation to the source:  

fkTREt  4  

   
 

)290__(1061.14 20 KatkT 

Example:  
1k, 1Hz and 290K (17C),    
      4nV 
         (5k?  => Multiply with5)   
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Noise bandwidth  
 
Signal Bandwidth = / = Noise Bandwidth  
Signal Bandwidth: The frequency range with a 
attenuation of less than -3dB of the centre or 
maximum signal.  
Noise Bandwidth: The noise bandwidth is set so 
that the product of the noise bandwidth and the 
maximum noise signal is equal to an area. The 
area is equal to the integral of the noise integrated 
over all frequencies. This can be expressed with 
the formula:  
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Here is:  
G(f) noise power as a function of frequency.  
GO: maximum noise effect. 
f: noise bandwidth.. 
However since often the voltage is measured 
instead of the power it can be useful to express 
the noise bandwidth as a function of the noise 
voltage:  
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Examples of "bandwidths"  
 
 
 
 
 
 
 
 
 
 
 
 
 
a) Low pass filter  
b) Band pass filter  
NB! The scale on the frequency axis is linear.  
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Calculation for low pass filter:  
 
Filter function for first order low pass filter: 

2/1

1
)(

fjf
fAv 
  

f2:-3dB frequency  
Normalized: Gain equal to 1 at DC.  
 
Size of gain:  

2
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Interprets the signal as a noise signal:  


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Substitutes tan2ff    and   

and get 

dfdf 2
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2f
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I.e. interpreted as noise the frequency width is 
57.1% greater than if it were an ordinary signal.  
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Calculation for two first order low pass filters 
 
 
 
 
 
 
 

The total gain is now: 
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Interpreted as noise the noise bandwidth is:  
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However here f2 is the -3dB limit for each step 
and not for the entire system. We must find the  

-3dB limit to the system:  22/1

1

2

1

ffa
 . This 

gives us . 

At the end we get: 

26436.0 ffa 

a
a f

ff
f 222.1

6436.044
2 





 

I.e. f (noise) is 1.22 fa (signal).   
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Conclusion:  
With sharper edges (higher order) the "noise 
bandwidth" will approach "the signal bandwidth."
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An illustrative example of how the noise 
generated at the different steps propagate further 
on towards the exit. 
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Examples of correlation term (last term):  
fA=fB and in phase: 
 
 
 
 
 
 
 
 
fA=fB  but in opposite phase: 
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fA=0.8·fB: 
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fA=2·fB: 
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Examples of results with and 
without correlation  
 
Vs (t) = Va (t) + Vb (t)  
              tVtVtVtVtVtVtV bababas 22222 

 
 
Example: Assume that  
• Va (t) and Vb (t) has the same amplitude  
• and that Va (t) and Vb (t) has the same form 
(both are a sine, both are a triangle, etc.)  
 

     
T

srmss dttV
T

tV
0

22 1   
T

a dttV
T 0

21  
T

b dttV
T 0

21    
T

ba dttVtV
T 0

2    

Un 
correlated: 

ba   /  

   2
rmsa tV    2

rmsa tV  +0   22 rmsa tV 2 

ba      2
rmsa tV    2

rmsa tV    22 rmsa tV    24 rmsa tV 2 Correlated: 
ba      ba    2

rmsa tV    2
rmsa tV    22 rmsa tV  =0 0 

 

We see that the two noise sources that are 
correlated will be able to provide between 0% 
and 141% of noise to the same sources if they 
were uncorrelated. 
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Addition of uncorrelated noise 
voltages  
 
Example 1:  
 
 
 
 
 
 
 
We must here make an rms addition and not a 
standard linear addition. We will then have:  

 
 
 
As an approach we can ignore noise contributions that are 
less than 1/10 of more dominating noise contributions.

2
2

2
1

2 EEE 
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Example 2:  
 
 
 
 
 
 
 
 
 
 
 
In b) is the source resistance in a) split into two 
equal parts. First, we calculate with standard (and 
incorrect) linear mathematics.  

a):   2/12/1 /2/45.0 HznVHznVE
RR

R
E t

LS

L
no 


  

b):      

We would expect that the answers should be 
equal but get a difference. The reason is that we 
use linear calculus although we should have 
practiced squared calculus of the rms values. 


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R
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    2/12/12/1 /82.2/82.25.0/82.25.0 HznVHznVHznV 
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We now perform the same calculation again but 
with the square of the noise voltage:  
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   22/1222/12 )/82.2()5.0(/82.2)5.0( HznVHznV 

  HzVHznV /104/82.2)5.0( 21822/1 

2/1/2 HznVEno 

 
So we take the square root:  

 
which is the same as we did when we calculated 
for a).  
 
When there are resistors in series or in parallel 
like in b) one should calculate the total resistance 
first and calculate the noise for the resulting 
resistance.  
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Partly correlated  
When some of the noise in the two noise voltages 
comes from the same source (cause), while some 
come from different sources the sources are 
partly correlated. We may in this case use the 
expression:  

 
Here is C a correlation coefficient that can have 
any value between -1 and +1. When C is equal to 
0 the voltages are uncorrelated and we have the 
relationship as discussed earlier. When C is equal 
to -1 the voltages are correlated but in opposite 
phase.  
 
Typically the correlation is zero and this is 
considered as default. If one incorrectly assumes 
no correlation the maximum error will be when 
the two noise voltages are equal and completely 
correlated. For equally large signals (the same 
rms value) we will have:  
• Two correlated signals => 2 rms value.  
• Two fully uncorrelated signals => 1.4 of the rms 
value.  
(i.e. the error will be 2/1.4 = 1.4 which gives that 
the noise level is 40% more than we assumed). 
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Example 3:  
 
 
 
 
 
 
 
a)  
We put up the following expression for a):  

 
We square all terms and get:  

 
But this is not correct! Why?  
Because it is the same current I! Hence all terms 
are 100% correlated.  
We must therefore have a correlation part:  

21 IRIRV 

2
2

1
2 ()( IRIRV  2)

    21
2

2
2

1
2 2 IRCIRIRIRV 

In this case C = 1 and we can write the 
expression:  

 
The rule of thumbs for serial resistors and 
impedances is that they should first be summed 
before they are squared. ! 

2
21

22 )( RRIV 

F5 28



b)  
Two noise sources (or sine generators with 
different frequency) is in series with two noise-
free resistors. This is also the same current that 
passes through both resistors. We therefore add 
the resistances before they are squared.  

 221

2
2

2
12

RR

EE
I





 

The voltage sources are uncorrelated and hence 
squared before they are summed.  
For the voltage source, there is no correlation 
term.  
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b) Calculated with the superposition principle: 
The current I consists of I1 and I2. We use the 
super-position principle, which says:  
In a linear network will the response from two or 
more sources be the sum of the response from 
each source alone with (the other) voltage 
sources short circuit, and the (other) current 
sources left open.  

That gives us: 
21

1
1 RR

E
I


  and 

21

2
2 RR

E
I


  

The currents are uncorrelated and we add:  

 
2
2

2
1

2 III 
When we insert for I1 and I2 so we get:  
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


  

which is what we found earlier. 
 
c) Syntax for partial correlation  
E1 and E2 have some correlation. On the figure 
this is marked with a plus sign. The position of 
these signs show that they support each other and 
that the correlation is positive i.e. 0 < 1.C   
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


  
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Example 4: Two uncorrelated sources  
 
 
 
 
 
 
Target: Find the total current I1 through R1.  
Method: Super-position  
Syntax: I1 consists of two sections: I11 from E1 and 
I12 from E2.Obs! In the book is I2 only the 
contribution from E2.  
 
We have:  

 

2

32

32
1

2
11

2
1 











RR

RR
RIE  

which we can write as:  

2
323121

2
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11 )(
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RRRRRR
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


  
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We have also  

 

2

31
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2

2
2

2
2 











RR

RR
RIE  

the part of I2 that passes through R1 is:  

 
The last two expressions can put together to:  

)/( 313212 RRRII 

2
323121

2
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2
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12 ( RRRR
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


)RR  

 
Since  

we can put together the two current contributions 
on the right side and we get:  

2
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2
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2
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2
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2
3
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Flicker noise  
Flicker noise =1/f-noise  =  low frequency noise = 
pink noise  
 
 
 
 
 
 
Flicker noise is a sort of noise that is related to 
irregularities at interfaces between different atom 
structures. One such place is the interface 
between the silicon crystal and silicon dioxide. 
The free electron pairs will collect charge that is 
trapped for a variable time. 
 
Flicker noise is observed primarily in 
semiconductors but can also be seen in radio 
tubes and some sorts of resistors.  
 
Flicker noise have a 1/f-characteristic i.e. it is 
weakest at the highest frequencies and grow to 
infinity when the frequency decreases.  
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To find the noise in a frequency band from fl to fh 
we can integrate as follows:  

l

h
f

ff f

f
K

f

df
KN

h

l

ln11    

Nf is the noise power in Watts.  
K is a constant in Watt.  
 
Example:  
Let fh = 10fl.  
Then we have: 13.2 KN f   
This shows that the noise level within each 
decade is constant. Thus the flicker noise between 
0.01 and 0.1 Hz is equal to the noise from 
100kHz to 1MHz.  
 
 
Most other types of noise is given pr Hz and the 
multiplication with f is done at the end. It is 
often advisable to do the same with the flicker 

noise. We make the approximation: 











l

h

l f

f

f

f
ln  

This is correct as long as lff   
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Example: Flicker noise in MOSFET  
 

fLCox
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1
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2
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
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


   

 
 AF KF Cox 
N 1.5 2.3e-26 2.2fF/m² 
P 1.3 6.3e-29 2.2fF/m² 
 
KF: 2.3e-26 --- 6.3e-29  
AF: 1.3 --- 1.8  
 m² / Cox: 2.1fF / m² --- 4.6fF   
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1.11 Shot noise  
Shot noise occurs in the pn-interfaces in the 
transistors and diodes.  
This type of noise describes fluctuations in the 
current running.  
It is expressed as:  
 

fqII DCsh  2  
 
where q = 1.602 e-19 Coulomb.  
We see that the noise level increases with the 
square root of the current. We also see that this 
type of noise is "white" i.e. it is constant and 
independent of the frequency (but not the 
bandwidth).  
 

F5 36



Bipolar transistors:  
From the equation for Shot-noise one could 
assume that the shot-noise level was almost zero 
when the power is zero. This is not correct. We 
will now study this further.  
 
In bipolar transistors, we find the most shot-noise 
in the emitter-base interface.  
The VI behaviour follows the familiar diode 
expression:  

 
where IE is the emitter current in Ampere, IS is the 
reverse current in Ampere and VBE is the voltage 
between the base and emitter.  
We share the current IE in two parts ...  

 
so that                 I1=-IS and  

)1( /  kTqV
SE

BEeII

21 IIIE 

                    I2=IS exp(VBE/kT) 
I1 is due to thermally generated minority carriers 
while I2 is due to diffusion of majority carriers 
over the pn-interface.  
NB! Both these currents have full shot-noise even 
if the current itself eliminate each other at VBE = 
0 Volt!  
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(During reversed bias voltage I1 will dominate 
while under strong forward voltage I2 will 
dominate.).  
At VBE = 0 we have that IE = 0 while the noise is  

 fqII Ssh  42
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Shot noise model:  
 
 
 
 
 
 
The circuit model for shot noise consists of a 
current source in parallel with a (noiseless) 
resistance.  
We find the size of the resistance by derivative 
the expression for diode current by VBE. By this 
derivation, we will have conductivity. The 
resistance is found by finding the inverse of the 
conductivity. 

 Ee qIkTr /
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Capacitive shunting of the thermal 
noise: kT / C noise  
The expression for thermal noise  

indicates that an open circuit with infinite 
resistance will generate an infinite noise voltage. 
This will not be the case since there will always 
be (parasitic) capacitances between the terminals.  
 
 
 
 
 
 
The resistance and capacitor will together act as a 
low pass filter. When the resistance grows so do 
Et. But at the same time decreases the filter cut-
off frequency and hence reduces the bandwidth. 

fkTREe  4
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The figure shows three curves with the same C 
but with three different R-values. The integral 
under the curves are equal.  
 
First we calculate the integrated noise voltage:  

 








0 2

22

0

22

1/1

/1

RC

dfE
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CjR

Cj
EE t

tno 


 

Then we need to change some variables:  
f=f2tan, f2=1/2 RC, df=f2sec²d 
and change the upper limit to /2. Then we get 

2

2/

0 2

2/

0 2
22/

0 2

2
2

2
2 24

tan1

sec
kTRfdkTRfdfE

dfE
E t

t
no 


 




 
and when we insert for f2 we get:  

 CkTEno /2 
C sets an upper limit for the noise voltage  
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Example of a kT/C-calculation.  
 
Assume an input signal of 1µVrms amplified by 
30dB. This gives an output signal of 31.6 Vrms. 
The output will be sampled and measured and we 
would like to have a capacitance large enough to 
limit the noise voltage to -15dB below the signal 
level. With a 200pF capacitor and a temperature 
of 290°K capacitor is limiting the noise to 
4.5Vrms which is -17dB relative to the signal 
level. 

Vrms
pF

KKsW

C

kT
En 5.4

200

290/1038.1 23





 
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