## **Razavi** $-I = \frac{1}{\sqrt{I_n^2}} = 4kT\gamma g_m$

Thermal noise represented as a current in parallel on the output

$$\overline{I_n^2} = 4kT\gamma g_m$$

Converted to voltage at the input with  $\gamma = 2/3$ . NB! For small line widths (i.e. L for example equal to 0.25µm)  $\gamma$  can be up to 2-3.

$$\overline{V_n^2} = \overline{I_n^2} r_o^2 = 4kT \left(\frac{2}{3}g_m\right) r_o^2$$

Flicker represented as a voltage in series on the gate.

$$\overline{V_n^2} = \frac{K}{C_{OX}WL} \cdot \frac{1}{f}$$

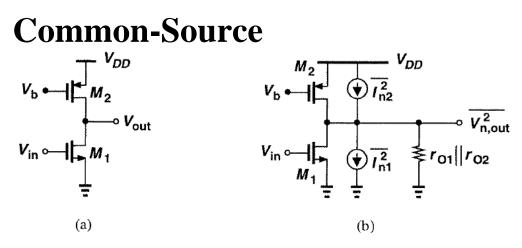



Figure 7.35

Vn noise on the gate of M1.

$$\overline{V_n^2} = 4kT\left(\frac{2}{3}g_{m1} + \frac{2}{3}g_{m2}\right)\frac{1}{g_{m1}^2} = 4kT\left(\frac{2}{3g_{m1}} + \frac{2}{3}\frac{g_{m2}}{g_{m1}^2}\right)$$

Noise on the output (with capacitive load  $C_L$ ) integrated over all frequencies:

$$\overline{V_{n,out,tot}^2} = \int_0^\infty 4kT \left(\frac{2}{3}g_{m1} + \frac{2}{3}g_{m2}\right) (r_{O1} \parallel r_{O2})^2 \frac{df}{1 + (r_{O1} \parallel r_{O2})^2 C_L^2 (2\pi f)^2} = \frac{2}{3} (g_{m1} + g_{m2}) (r_{O1} \parallel r_{O2}) \frac{kT}{C_L}$$

SNR for input sine with amplitude Vm

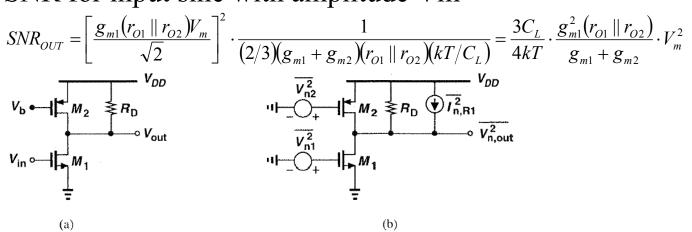



Figure 7.36

$$\overline{V_{n,in}^2} = 4kT\frac{2}{3}\left(\frac{g_{m2}}{g_{m1}^2} + \frac{1}{g_{m1}}\right) + \frac{1}{C_{ox}}\left[\frac{K_P g_{m2}^2}{(WL)_2 g_{m1}^2} + \frac{K_N}{(WL)_1}\right]\frac{1}{f} + \frac{4kT}{g_{m1}^2 R_D}$$

First brackets: Thermal noise, second brackets: flicker noise, last term: RD

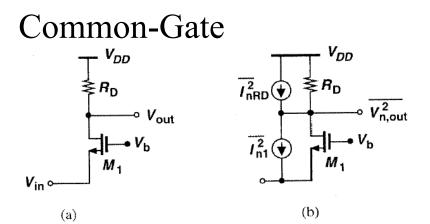
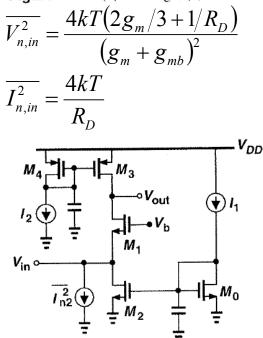




Figure 7.37 (a) CG stage, (b) circuit including noise sources.





Thermal noise:

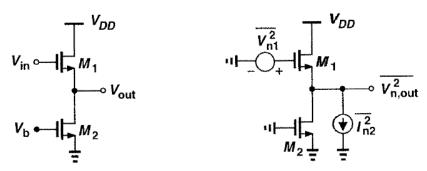
$$\overline{V_{n,in}^2} = 4kT \frac{2}{3} \frac{(g_{m1} + g_{m3})}{(g_{m1} + g_{mb1})^2}$$
$$\overline{I_{n,in}^2} = 4kT \frac{2}{3} (g_{m2} + g_{m3})$$

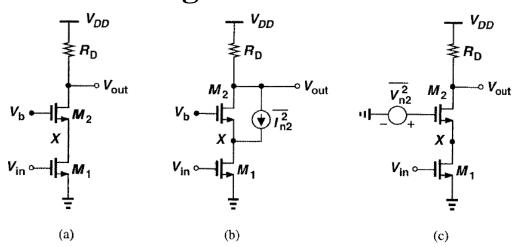
Flicker noise:

$$\overline{V_{n,in}^{2}} = \frac{1}{C_{ox}f} \left[ \frac{g_{m1}^{2}K_{N}}{(WL)_{1}} + \frac{g_{m3}^{2}K_{P}}{(WL)_{3}} \right] \frac{1}{(g_{m1} + g_{mb1})^{2}}$$
$$\overline{I_{n,in}^{2}} = \frac{1}{C_{ox}f} \left[ \frac{g_{m2}^{2}K_{N}}{(WL)_{2}} + \frac{g_{m3}^{2}K_{P}}{(WL)_{3}} \right]$$

(Total Noise found by adding together the Vn and In expressions above.)

## **Source followers (Common-Drain)**





Figure 7.42 (a) Source follower, (b) circuit including noise sources.

In can often be ignored

$$\overline{V_{n,in}^2} = \overline{V_{n1}^2} + \frac{\overline{V_{n,out}^2}|_{M2}}{A_v^2} = 4kT\frac{2}{3}\left(\frac{1}{g_{m1}} + \frac{g_{m2}}{g_{m1}^2}\right)$$

Often avoided in LP setups due to that they add noise on the input signal while the voltage gain is less than 1.

## **Cascode Stage**



**Figure 7.43** (a) Cascode stage, (b) noise of  $M_2$  modeled by a current source, (c) noise of  $M_2$  modeled by a voltage source.

$$\overline{V_{n,in}^2}|_{M1,RD} = 4kT \left(\frac{2}{3g_{m1}} + \frac{1}{g_{m1}^2R_D}\right)$$

SNR is the signal/noise ratio when the signal is present. *SNRmax* is the ratio between the maximum signal *Smax* and noise (*Nmax*) that is present at the maximum signal. *SNRmin* is the ratio between the minimum signal *Smin* and the noise level (*Nmin*) in this case. Since the noise almost always grows with the signal we will have that *Nmax*> *Nmin*.

DR (Dynamic Range) is the ratio between the maximum signal and the noise at the minimal signal. Hence we will always have  $DR \ge SNR$ .

$$SNR_{Max} = \frac{S_{Max}}{N_{Max}}$$
$$SNR_{Min} = \frac{S_{Min}}{N_{Min}}$$
$$DR = \frac{S_{Max}}{N_{Min}}$$

Generally we will have that:  $DR >> SNR_{Max} >> SNR_{Min}$