
Assignment 2

INF 5750 – Open Source Software Development – Fall 2011

Technologies involved

Spring, Hibernate, JUnit, Subversion, and Maven.

Overview

In this assignment you will be implementing the functionality for a simple student system. The system
consists of three layers: The persistence layer, the service layer, and presentation layer. Your task is to
implement the functionality of the two first-mentioned layers. The functionality of the two layers is
defined in interfaces provided for you. You need to implement the interfaces and create unit tests
proving that your implementations are correct according to the interfaces. The graphical user interface
(presentation layer) is provided, and can be configured to use your implementations to get a fully
working system.

Case description

The case is a simple student system for keeping track of students, courses and degrees. Students can
attend courses and get degrees, courses have attendants, and degrees have required courses. In order for
a student to get a degree the student must attend all courses required by the degree. To keep the model
simple there is no time aspect in the system. The system does not claim to be a realistic student system.

Provided source code

Note: You’re not allowed to change any of the provided code except the root pom.xml and the pom.xml
of the GUI project. Also, you if you want to use Hibernate annotations you can annotate the classes in
the api project.

assignment2-api

The API project contains the model and the interfaces you will be implementing. The model consists of
three classes: Student, Course, and Degree. The properties of these classes are kept to a minimum to
make life simpler. The Student has a Set of Courses and a Set of Degrees. The Course has a Set of
Students (attendants), so the Student-Course relation is bidirectional. The Degree has a Set of required
Courses. (Tip: Make a drawing of all the relations). For each of these classes you will find a
corresponding DAO interface (Data Access Object) with simple methods to persist (“store”) and to
retrieve persisted objects. The main functionality of the system is defined by the StudentSystem service
interface. Your implementation of this interface will use the DAOs to persist objects.

assignment2-gui

The GUI project contains a fully working GUI based on Swing. The GUI will use your implementation
of the API when you run it.

Requirements

• All your code must be in a separate Maven 2 project (assignment2-<username>) alongside the
provided modules. You must put all modules in a subdirectory called assignment2 in the same
Subversion repository as in assignment 1.

• All DAO interfaces must be implemented according to the description in the interfaces and in
the assignment using Hibernate for persistence. Usage of Spring ORM/Hibernate support is
mandatory.

• The service interface (StudentSystem) must be implemented, and must use the DAO interfaces
for storing and retrieving the model objects.

• All methods must be unit tested according to the defined behaviour of the implementations. The
tests must run successfully with Maven and use Spring to instantiate the components which are
going to be tested. Usage of Spring test support is mandatory.

• The components of the system must be wired together using the Spring container and the
dependency injection principle. You can choose whether to use the XML or annotation based
configuration.

• The code must have a consistent and readable code style.
• The provided GUI must be fully functional.

Hints and detailed description

• First, create a new directory in the local working copy of your inf5750 repository (alongside
assignment 1) called assignment2-<username>.

• Download the provided source code and unzip the two modules within into your assignment 2
folder.

• You must create a new project alongside the two modules from the zip file called assignment2-
<username> in which you will write your implementations (from now on referred to as “your
project”). Inside your project directory you will need a pom.xml file (use one of the pom.xml
files in assignment2-api or assignment2-gui as a template) and the usual source directories
(src/main/java/ etc).

• The structure of your working copy should look like this:
inf5750/assignment1-<username>/
inf5750/assignment2-<username>/assignment2-api/
inf5750/assignment2-<username>/assignment2-gui/
inf5750/assignment2-<username>/assignment2-<username>/

• In order to implement the API in your project, you need a dependency to assignment2-api.
• In order to implement and run unit tests you need a dependency to JUnit (junit) and a

dependency to Spring (spring-test).
• Opening up the project in Eclipse:

o Run mvn install from the root of the project (where pom.xml, assignment2-api,
assignment2-gui, etc. is located).

o Run mvn eclipse:eclipse from this directory.

o Import this location into Eclipse and select all the projects. This will create separate
projects in Eclipse. Choose “Existing projects into workspace” - do not choose “New
project”.

• In order to get the GUI working later on, you must add your project as a dependency to the
pom.xml in the assignment2-gui project.

• Use the repository actively! It will prevent lost source code.
• Your Hibernate implementations of the DAO interfaces should be named HibernateCourseDAO

(and so on) and be placed in a package called no.uio.inf5750.assignment2.dao.hibernate. Your
implementation of the StudentSystem interface should be named DefaultStudentSystem and be
placed in package called no.uio.inf5750.assignment2.service.impl.

• Your DAO test classes should be placed in a package called no.uio.inf5750.assignment2.dao.
Your StudentSystem test class should be placed in a package called
no.uio.inf5750.assignment2.service.

• The beans.xml file must go into a directory called src/main/resources/META-INF/assignment2/
for the main class in the GUI to find it.

• To get detailed instructions on how to set up the Spring (spring-orm) and Hibernate POM
dependencies and how to use the Spring support for ORM/Hibernate and testing, please consult
the Hibernate lecture slides.

• To run the GUI, locate the main class in the GUI project in Eclipse and run it as a Java
application in Eclipse (right click the file in the package explorer). By default, Eclipse uses the
dependencies from the local Maven 2 repository. Remember to install the artefacts/projects you
change into the repository before you run the GUI. You can set up Eclipse to depend directly on
the other projects in Eclipse, so that you don’t have to manually install them in the repository
every time you wish the changes to take effect in the GUI.

• Remember that each time you alter a pom.xml, you must rebuild the Eclipse files (“mvn
eclipse:eclipse”) and refresh the corresponding project for the changes to take effect in Eclipse.

• If you are using Spring annotations you must provide a value to the DefaultStudentSystem class
annotation like this for the GUI to find it: @Component(“defaultStudentSystem”)

• When you’re done, commit all the source code to your Subversion repository and send your
group teacher an e-mail with subject “Assignment 2 - <username>”.

