
Revision control
INF5750/9750 - Lecture 1 (Part III)

Problem area

● Software projects with multiple developers
need to coordinate and synchronize the
source code

Approaches to version control

● Work on same computer and take
turns coding
○ Nah...

● Send files by e-mail or put them
online
○ Lots of manual work

● Put files on a shared disk
○ Files get overwritten or deleted

and work is lost, lots of direct
coordination

● In short: Error prone and inefficient

The preferred solution
● Use a revision control system. RCS - software that

allows for multiple developers to work on the same
codebase in a coordinated fashion

● History of Revision Control Systems:
○ File versioning tools, e.g. SCCS, RCS
○ Central Style - tree versioning tools. e.g. CVS
○ Central Style 2 - tree versioning tools e.g. SVN
○ Distributed style - tree versioning tools e.g. Bazaar

● Modern DVCS include Git, Mercurial, Bazaar

Which system in this course?

● In this course we will be using
Bazaar as the version control
system

● The remote repository is
hosted at launchpad.net

● This is the same system as
used in DHIS2 and Ubuntu

● It can be used as a distributed
version system or a
centralized repository

How it works

Repository:
Central storage of
the source code at
a server

Working tree:
Local copy of the
source code
residing on the
developer’s
computer (a client)

synchronize

synchronize

Commit

Centralized De-centralized

Commit
locally

The repository

● Remembers every change
ever written to it (called
commits)

● You can have a central or local
repository.
○ Central = big server in cloud
○ Local = on your harddisk

● Clients can check out an
independent, private copy of
the filesystem called a working
tree

Central

Local

Working tree

● Ordinary directory tree
● Root directory has a hidden

administrative .bzr directory,
containing your local repository

● Changes are not incorporated or
published until you tell it to do so

Revisions
● Every commit creates a new revision, which

is identified by a unique revision id
● A revision identifier refers to a specific state

of a branch’s history forms a
revision history

● Every revision can be
checked out independently

● The current revision can be
roll-backed to any revision

● Commits are atomic

Trunk and Branches
● Trunk is the original main line of development (also a

branch, just called trunk for historical reasons)
● A branch is a copy of trunk which exists independently

and is maintained separately
● Useful in several situations:

○ Large modifications which takes long time and affects other
parts of the system (safety, flexibility, transparency)

○ Different versions for production and development
○ Customised versions for different requirements

Trunk

Branch 1
Branch 3

Branch 2

Conflicts

● Arises if several developers edit the same part of a file
● Bazaar will try to auto-merge
● If not, you have to resolve conflicts manually

1) Developer A makes a
change to Code.java
and commits

3) Developer B updates
his working copy. He will
be noticed that Code.
java is in a state of
conflict.

4) Developer B edits
and resolves the
conflicts, and commits
the file back in the
repository

2) Developer B makes a
change to Code.java and
tries to commit, but gets an
”out-of-date” warning.

Advantages of RCS

● Concurrent development by multiple
developers

● Possible to roll-back to earlier versions if
development reaches a dead-end

● Allows for multiple versions (branches) of a
system

● Logs useful for finding bugs and monitoring
the development process

● Works as back-up

Good practises

● Update, build, test, then commit
○ Do not break the checked in copy

● Update out of habit before you start editing
○ Reduce your risk for integration problems

● Commit often
○ Reduce others risk for integration

problems
● Check changes (diff) before committing

○ Don’t commit unwanted code in the repo

What to add to the repository

● Source code including tests
● Resources like configuration files

● What not to add:
○ Compiled classes / binaries (target folder)
○ IDE project files
○ Third party libraries

● Add sources, not products (generated files)!
● Use a .bzrignore file to tell Bazaar which files

to ignore

Work cycle (Centralized way)
Initial check out:
The developer
checks out the
source code from
the repository

3) Commit:
The developer
makes changes and
writes or merges
them back into the
repository

2) Update:
The developer receives
changes made by other
developers and
synchronizes his local
working copy with the
repository
Resolve conflicts:
When a developer has
made local changes
that won’t merge nicely
with other changes,
conflicts must be
manually resolved

1) Development:
The developer makes
changes to the
working copy

Repository

Example remote repository locations:

lp:~<user>/<project>/<branch-name>

lp:~<user>/dhis2-academy/<branch-name>

lp:~<user>/+junk/<branch-name>

Starting a new repository
$ bzr init lp:~user/dhis2-academy/branch-name
$ bzr checkout lp:~user/dhis2-academy/branch-name
$ bzr add (adds files)
$ bzr commit -m “My first files”
You can also create a remote repository by doing a
local ‘bzr init’ and then a ‘push <remote-repository>’,
but you should avoid using push, at least until you
know what you’re doing.
‘bzr push’ replaces the central repository with your
own, so it can erase what is stored centrally.
We may cover more use of distributed bazaar
repositories later in the course if there is interest.

Getting code from an existing
repository

$ bzr checkout lp:~user/dhis2-academy/branch-name
(Edit project. Time passes.)
$ bzr add
$ bzr update (download any changed files)
(resolve conflicts either automatically or manually)
$ bzr commit -m “Second commit”

● Now your files are in the central repository
● This is not using the decentralized way to do it
● Instead of bzr checkout, you could use first bzr branch

<repo-url> and then bzr bind <repo-url>.

Making changes to a repository
Assume that you’ve done either “bzr checkout
<repository>” or “bzr merge <repository” + “bzr bind
<repository>”

$ bzr update (it’ll try to auto-merge changes)
$ bzr add (adds new files)
$ bzr commit -m “My first files”

(it may also discover conflicts and give an error message,
forcing you to do bzr update and manually look through
files and fix marked changes)

Decentralized - two ways

Bind and unbind

Remote
repository

Local
repository

Working
tree

“bzr commit”

if bound to
central

repository

if bound to
local

repository

$ bzr unbind
or after

$ branch <repository>

$ bzr bind
<repository>

or
$ checkout

<repository>

Working decentralized
You can commit locally, if you don’t want to upload to the
central repository. For example if your project doesn’t
compile, you should never upload to the central repository.

$ bzr commit --local -m “Some revisions”
$ bzr commit --local -m “Some more revisions”
(these will be stored locally)
… then later …
$ bzr commit -m “Stored centrally”

In the above example, you are still bound to the central
repository, but you are not using it for all commits.

Creating your own branch
(not bound to central repository)
$ bzr branch lp:~user/dhis2-academy/branch-name

● You are now in distributed mode.
● If you run ‘bzr commit’ now, your changes will not be

checked into the central repository.
● This is great for checking out projects that you want to

play with, but you are not planning to contribute to
immediately.

● If you want to contribute some of your source-code, you
can bind, merge etc… Or check out with ‘bzr checkout’
in a separate directory, merge your changes in there
and then update from the new directory.

Working decentralized
You can unbind from the central repository

$ bzr unbind (now you’re on your own)
… edit files …
$ bzr update
$ bzr commit -m “My first files” (these will be stored locally)
…
$ bzr bind <central repository>
$ bzr update
$ bzr commit -m “Stored centrally”

Bazaar offline commands

Add a file to the working copy:
$ bzr add Code.java

Delete a file from the working copy:
$ bzr remove Code.java

Compare working copy with repository on file-level:
$ bzr status

Compare working copy with repository on code-level:
$ bzr diff

Revert a file to the state from last commit
$ bzr revert Code.java

Tell bazaar that you’ve manually fixed a failed merge
$ bzr resolve Code.java (then do bzr commit afterwards)

Summary

● Revision control systems enable multiple developers to
work on the same code base

● Bazaar uses a client/server system with a repository
and working copies

● Every commit generates a new revision, which can be
checked out independently

● Projects have a main branch, but can have multiple
branches

Resources

https://help.launchpad.net/Code

http://doc.bazaar.canonical.
com/latest/en/tutorials/using_bazaar_with_laun
chpad.html

http://doc.bazaar.canonical.com/bzr.2.6
/en/tutorials/tutorial.html

http://doc.bazaar.canonical.
com/latest/en/_static/en/bzr-en-quick-reference.
pdf

https://help.launchpad.net/Code
https://help.launchpad.net/Code
http://doc.bazaar.canonical.com/latest/en/tutorials/using_bazaar_with_launchpad.html
http://doc.bazaar.canonical.com/latest/en/tutorials/using_bazaar_with_launchpad.html
http://doc.bazaar.canonical.com/latest/en/tutorials/using_bazaar_with_launchpad.html
http://doc.bazaar.canonical.com/latest/en/tutorials/using_bazaar_with_launchpad.html
http://doc.bazaar.canonical.com/bzr.2.6/en/tutorials/tutorial.html
http://doc.bazaar.canonical.com/bzr.2.6/en/tutorials/tutorial.html
http://doc.bazaar.canonical.com/bzr.2.6/en/tutorials/tutorial.html
http://doc.bazaar.canonical.com/latest/en/_static/en/bzr-en-quick-reference.pdf
http://doc.bazaar.canonical.com/latest/en/_static/en/bzr-en-quick-reference.pdf
http://doc.bazaar.canonical.com/latest/en/_static/en/bzr-en-quick-reference.pdf
http://doc.bazaar.canonical.com/latest/en/_static/en/bzr-en-quick-reference.pdf

Work cycle - Distributed way
● Several ways to work decentralized
● Create a local branch - “bzr branch …”
● Work locally
● Then pull central changes into your own

repository
● Then merge and push your own repository

to the cent
● or
● Check out code
● Do local commits using ‘bzr commit --local’
● Run update to get new changes
● Commit into central repository

Working offline for a long time

