
Using Twitter™ &
Facebook™ API
INF5750/9750 - Lecture 10 (Part II)

Lecture contents
● Connecting to popular social APIs
● Authentication
● Authorization
● Common calls
● Privacy and understanding data storage

Social APIs
• An API to connect different social networks to exchange

data
• Users can interact with:

o Authorization
o User Profile
o Activity Streams/Data/Posts
o Friends/Followers/Connections...
o ...

• OpenSocial? – interoperable formats
o Started with Orkut
o Few really common resources and formats

Authentication
● Multiple authentication schemes before standardizing to OAuth.

OpenID gave rise to the idea of Oauth.
● Differences in v1.0 and v2.0, but we’ll skip the details
● Few webservices will still allow 2 common authentication schemes:

● Basic authentication
● Digest authentication

● Common terms:
● “OAuth dance” - unofficial term to describe flow
● Request token - lets service know “what” is requesting access
● Access token - authorized request token is exchanged for an access

token
● Endpoints - URLs where token are requested and exchanged
● Service Provider - the provider of the web service
● Consumer - application that the user will use

Twitter Authorization
• Broadly in two ways:

o Application-user authentication
o Application-only authentication

• Application-user uses OAuth 1.0A

o Per request
o Token-based

• Application-only uses OAuth 2.0

3-legged authorization
• Authorize application to obtain an access token

by redirecting a user to Twitter
• GET oauth/authorize endpoint
• user will always be prompted to authorize

access to your application, even if access was
previously granted.

https://dev.twitter.com/docs/api/1/get/oauth/authorize

OAuth – Sign in to twitter
(Step 1)

OAuth – Sign in to twitter
(Step 2)

OAuth – Sign in to twitter
(Step 3)

Application-only
Authentication

Points to remember
• Tokens are passwords
• SSL absolutely required
• No user context
• Rate limiting

o Separation between calls made on user’s behalf compared to those
made from apps

• Invalid requests to obtain or revoke bearer tokens
{"errors":[{"code":99,"label":"authenticity_token_error","message":"Unable

to verify your credentials"}]}

• API request contains invalid bearer token
{"errors":[{"message":"Invalid or expired token","code":89}]}

• Bearer token used on endpoint which doesn't support application-
only auth (e.g. GET statuses/home_timeline)

{"errors":[{"message":"Your credentials do not allow access to this
resource","code":220}]}

Twitter
Console

https://dev.twitter.com/console

Facebook Login Flow
• Easiest is to use the Facebook SDK
• JavaScript SDK with JQuery is for recommended for webapps

 $(document).ready(function () {
 $.ajaxSetup({ cache: true });
 $.getScript('//connect.facebook.net/en_UK/all.js', function () {
 FB.init({
 appId: 'YOUR_APP_ID',
 channelUrl: '//yourapp.com/channel.html',
 });
 $('#loginbutton,#feedbutton').removeAttr('disabled');
 FB.getLoginStatus(function (response) {
 if (response.status === 'connected') {
 // the user is logged in and has authenticated your app
 var uid = response.authResponse.userID;
 var accessToken = response.authResponse.accessToken;
 } else if (response.status === 'not_authorized') {
 // the user is logged in to Facebook,
 // but has not authenticated your app
 } else {
 // the user isn't logged in to Facebook.
 }
 });
 });
});

Login & logout a user
FB.login(function (response) {
 if (response.authResponse) {
 // The person logged into your app
 } else {
 // The person cancelled the login dialog
 }
});

FB.logout(function (response) {
 // Person is now logged out
});

Facebook JS API

Privacy and data storage
• Be careful not to store user information without user

acceptance and clear guidelines
• User information should have a deletion policy or data

withdrawal policy
• User authentication details should not be stored, instead

tokens should be stored
• Encryption for tokens should be done in application on

device

Resources
• Implementing Twitter Sign-in

o https://dev.twitter.com/docs/auth/implementing-sign-twitter

• Facebook SDK for JavaScript
o https://developers.facebook.com/docs/howtos/login/getting-started/

• Facebook login flow
o https://developers.facebook.com/docs/facebook-login/login-flow-for-web

• Facebook JavaScript SDK
o http://developers.facebook.com/docs/reference/javascript/

https://dev.twitter.com/docs/auth/implementing-sign-twitter
https://developers.facebook.com/docs/howtos/login/getting-started/
https://developers.facebook.com/docs/facebook-login/login-flow-for-web
http://developers.facebook.com/docs/reference/javascript/

	Using Twitter™ & Facebook™ API
	Lecture contents
	Social APIs
	Authentication
	Twitter Authorization
	3-legged authorization
	OAuth – Sign in to twitter�(Step 1)
	OAuth – Sign in to twitter�(Step 2)
	OAuth – Sign in to twitter�(Step 3)
	Application-only�Authentication
	Points to remember
	Twitter Console�https://dev.twitter.com/console
	Facebook Login Flow
	Login & logout a user
	Facebook JS API
	Privacy and data storage
	Resources

