
REST using
SpringMVC
INF5750/9750 - Lecture 4 (Part I)

Problem area

● Transferring state over the network
● HTTP is a stateless protocol

● CORBA
● RPC? RMI?
● Serialization as File?

● REST is an architectural style, a way to design web-
services (WS) or web-api

● Not all Web-api are RESTful

● We are skipping the details of what makes a WS
RESTful

HTTP & REST terms
● HTTP methods, also referred as “verbs” for web language

○ GET, POST, PUT, DELETE
○ … OPTIONS, HEAD, PATCH …

● HTTP Status codes
○ 1xx - Informational (100-continue ; 102-processing)
○ 2xx - Success (200-OK; 201-Created; 204-NC)
○ 3xx - Redirection (301-Moved; 302-Found;...)
○ 4xx - Client Error (400-bad request; 401-unauthorized..)
○ 5xx - Server Error (500-internal server error;...)

● Resources - sources of information
○ Are identified using URI.

● Representation - format of the information (using mimetype)

Content Negotiation
● The process by which the client determines the

representation of the resource

● Can be done through URL extension
○ http://localhost:8080/restService/person.json

● Can be done through HTTP header
○ Accept: application/json

● Let us look at client-side behavior
○ http://apps.dhis2.org/demo/api/resources

http://apps.dhis2.org/demo/api/resources
http://apps.dhis2.org/demo/api/resources

Spring MVC for REST

● Spring MVC is well suited to create web services
because it is based on URL mapping for requests and
can flexibly respond different content types

● Resources become models for Controllers

● Representations are Views or RequestBody

● Spring integrates well with a number of serializers such
as for JSON (Jackson) or XML (JAXB)

ContentNegotiatingViewResolver
● Does not resolve views itself like

UrlBasedViewResolver, rather delegates to others
● Two strategies

○ Use a distinct URI for each resource (.xml; .json)
○ Use same URI, but set the Accept request header

<bean class="org.springframework.web.servlet.view.ContentNegotiatingViewResolver">
 <property name="mediaTypes">
 <map>
 <entry key="html" value="text/html"/>
 <entry key="json" value="application/json"/>
 </map>
 </property>
 <property name="viewResolvers">
 <list>
 <bean class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/pages/"/> <property name="suffix" value=".jsp"/>
 </bean>
 </list>
 </property>
 <property name="defaultViews">
 <list>
 <bean class="org.springframework.web.servlet.view.json.MappingJackson2JsonView" />
 </list>
 </property>
</bean>

Changing the Controller
● Remember from previous examples that Controllers

return a String for view name
● Instead use @ResponseBody, to respond with data in

the format the client requested
● Spring will try to resolve the data into the format
● If Jackson-mapper is on classpath and JSON is Accept

from client, then Spring will return a JSON string
● If JAXB is on classpath and XML is Accept from client,

then Spring will return an XML string

<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-core</artifactId>
 <version>2.0.4</version>
</dependency>
<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.0.4</version>
</dependency>

@RequestMapping(value="/student/{user}", method = RequestMethod.GET)
@ResponseBody
public Student getStudentByUsername(@PathVariable String user,
 HttpServletRequest request,
 HttpServletResponse response) {

 Student student = studentService.getStudent(user);
 return student;
}

Supported Message Converters
This is the complete list of HttpMessageConverters set up by mvc:
annotation-driven:
● ByteArrayHttpMessageConverter converts byte arrays.
● StringHttpMessageConverter converts strings.
● ResourceHttpMessageConverter converts to/from org.

springframework.core.io.Resource for all media types.
● SourceHttpMessageConverter converts to/from a javax.xml.transform.

Source.
● FormHttpMessageConverter converts form data to/from a

MultiValueMap<String, String>.
● Jaxb2RootElementHttpMessageConverter converts Java objects

to/from XML — added if JAXB2 is present on the classpath.
● MappingJackson2HttpMessageConverter (or

MappingJacksonHttpMessageConverter) converts to/from JSON —
added if Jackson 2 (or Jackson) is present on the classpath.

● ...

Making the POJO serialize
● Sometimes you want to change the name of the

property on a POJO to something else
● Use @JsonProperty (“<name>”) for naming the property
● Use @XmlRootElement(name = "form")

@XmlRootElement(name = "form")
public class Form
{

private String label;

@JsonIgnore // Ignored during serialization to JSON
private String periodType;

@Deprecated
private Boolean allowFuturePeriods;

private List<Group> groups = new ArrayList<Group>();

public Form() { }

@JsonProperty
public String getLabel()
{

 return label;
}

}

Consuming WS using Spring
● RestTemplate is the core class for client-side access to

RESTful services

● HttpMessageConverter used to marshal objects into the
HTTP request body and to unmarshal any response
back into an object

● getForObject() will perform a GET, convert the HTTP
response into an object type of your choice and return
that object

● postForLocation() will do a POST, converting the given
object into a HTTP request and return the response
HTTP Location header where the newly created object
can be found

Resources

● Spring MVC docs - http://docs.spring.io/spring/docs/3.2.
x/spring-framework-reference/html/mvc.html

● Spring REST Client docs - http://docs.spring.
io/spring/docs/3.2.x/spring-framework-
reference/html/remoting.html#rest-client-access

