
Unit Testing
using JUnit
INF5750/9750 - Lecture 4 (Part II)

Problem area

● Code components must be tested!
○ Confirms that your code works

● Components must be tested in isolation
○ A functional test can tell you that a bug exists in the

implementation
○ A unit test tells you where the bug is located

Component B Component C

Component A
Test failure!
But where
is the bug?

<using> <using>

Example: The Calculator

public class DefaultCalculator
 implements Calculator
{
 public int add(int number1, int number2)
 {
 return number1 + number2;
 }

 public int multiply(int number1, int number2)
 {
 return number1 * number2;
 }
}

public interface Calculator
{
 int add(int number1, int number2);

 int multiply(int number1, int number2);
}

Approaches to unit testing

● Write a small command-line program, enter values, and
verify output
○ Involves your ability to type numbers
○ Requires skills in mental calculation
○ Doesn’t verify your code when its released

Approaches to unit testing

● Write a simple test program
○ Objective and preserves testing efforts
○ Requires you to monitor the screen for error messages
○ Inflexible when more tests are needed

public class TestCalculator
{
 public static void main(String[] args)
 {
 Calculator calculator = new DefaultCalculator();

 int result = calculator.add(8, 7);

 if (result != 15)
 {
 System.out.println(”Wrong result: ” + result);
 }
 }
}

The preferred solution

● Use a unit testing framework like JUnit
○ A unit is the smallest testable component in an

application
○ A unit is in most cases a method
○ A unit does not depend on other components which

are not unit tested themselves
○ Focus on whether a method is following its API

contract

Component B Component C

Component A

<using> <using>

Unit test A

Unit test CUnit test B

JUnit

● De facto standard for developing unit tests in Java
○ One of the most important Java libraries ever developed
○ Made unit testing easy and popular among developers
○ Driven by annotations
○ Spring provides integration with JUnit

Using JUnit annotations
● No need to follow naming conventions

○ Tests identified by @Test annotation
○ Fixture methods identified by @Before and @After

annotations

● Class-scoped fixture
○ Identified by @BeforeClass and @AfterClass annotations
○ Useful for setting up expensive resources, but be careful…

● Ignored tests
○ Identified by @Ignore annotation
○ Useful for slow tests and tests failing for reasons beyond you

● Timed tests
○ Identified by providing a parameter @Test(timeout=500)
○ Useful for benchmarking, network, deadlock testing

Test fixtures

setUp() testXXX() tearDown()

TestCase
lifecycle

● Tests may require common resources to be set up
○ Complex data structures
○ Database connections

● A fixture is a set of common needed resources
○ A fixture can be created by overriding the setUp and

tearDown methods from TestCase
○ setUp is invoked before each test, tearDown after

JUnit Calculator test
import static junit.framework.Assert.*;

public class CalculatorTest
{
 Calculator calculator;

 @Before
 public void before()
 {
 calculator = new DefaultCalculator();
 }

 @Test
 public void addTest()
 {
 int sum = calculator.add(8, 7);
 assertEquals(sum, 15);
 }

 @Test
 public void multiplyTest()
 {
 }
}

Static import of Assert

Fixture

Use assertEquals to
verify output

Fixture

Example: The EventDAO

public interface EventDAO
{
 int saveEvent(Event event);

 Event getEvent(int id);

 void deleteEvent(Event event);
}

public class Event()
{
 private int id;
 private String title;
 private Date date;

 // constructors
 // get and set methods
}

Event object

EventDAO interface

EventDAOTest
import static junit.framework.Assert.assertEquals;

@Before
public void init()
{
 eventDAO = new MemoryEventDAO();
 event = new Event(”U2 concert”, date);
}

@Test
public void saveEvent()
{
 int id = eventDAO.saveEvent(event);

 event = eventDAO.getEvent(id);

 assertEquals(id, event.getId());
}

@Test @Ignore
Public void getEvent()
{
 // Testing code...
}

Assert imported statically

Fixture method identified
by the @Before annotation

Test identified by the @Test
annotation. Test signature is
equal to method signature.

Test being ignored

The Assert class
● Contains methods for testing whether:

○ Conditions are true or false
○ Objects are equal or not
○ Objects are null or not

● If the test fails, an AssertionFailedError is thrown
● All methods have overloads for various parameter types
● Methods available because TestCase inherits Assert

Assert

TestCase

EventDAOTest

<inherits>

<inherits>

Assert methods
Method Description

assertTrue(boolean) Asserts that a condition is true.

assertFalse(boolean) Asserts that a condition is false.

assertEquals(Object, Object) Asserts that two objects are equal.

assertArrayEquals (Object[], Object[]) Asserts that all elements in the two arrays are equal

assertNotNull(Object) Asserts that an object is not null.

assertNull(Object) Asserts that an object is null.

assertSame(Object, Object) Asserts that two references refer to the same object.

assertNotSame(Object, Object) Asserts that two references do not refer to the same object.

fail(String) Asserts that a test fails, and prints the given message.

Assert in EventDAOTest

@Test
public void testSaveEvent()
{
 int id = eventDAO.saveEvent(event);
 event = eventDAO.getEvent(id);
 assertEquals(id, event.getId());
 assertEquals(”U2 concert”, event.getTitle());
}

@Test
public void testGetEvent()
{
 int id = eventDAO.saveEvent(event);
 event = eventDAO.getEvent(id);
 assertNotNull(event);
 event = eventDAO.getEvent(-1);
 assertNull(event);
}

Saves and retrieves an Event
with the generated identifier

An object is expected

Asserts that null is returned
when no object exists

Asserts that the saved object is
equal to the retrieved object

Core Hamcrest Matchers - assertThat

Examples The matchers

assertThat("good", allOf(equalTo("good"), startsWith("good")));
allOf(...) - same as && (AND)
equalTo(...) - object equivalence,
startsWith(...) - string matching

assertThat("good", not(allOf(equalTo("bad"), equalTo("good")))); not(...) - same as != (NOT EQUAL)

assertThat("good", anyOf(equalTo("bad"), equalTo("good"))); anyOf (...) - same as || (OR)

assertThat(theBiscuit, equalTo(myBiscuit));
assertThat(theBiscuit, is(equalTo(myBiscuit)));
assertThat(theBiscuit, is(myBiscuit));

is - syntactic sugar - all 3 statements are same

● Don’t use too much sugar!! - Only use for readability

Testing Exceptions

● Methods may be required to throw exceptions
● Expected exception can be declared as an annotation

○ @Test(expected = UnsupportedOperationException.class)

@Test(expected = UnsupportedOperationException.class)
public void divideByZero()
{
 calculator.divide(4, 0);
}

Annotation declares that an
exception of class

UnsupportedOperationException
is supposed to be thrown

Running JUnit

● Textual test runner
○ Used from the command line
○ Easy to run

● Integrated with Eclipse
○ Convenient, integrated testing within your development

environment!

● Integrated with Maven
○ Gets included in the build lifecycle!

JUnit with Eclipse

● Eclipse features a JUnit view
● Provides an informative GUI displaying test summaries
● Lets you edit the code, compile and test without leaving

the Eclipse environment

JUnit with Maven

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
</dependency>

Add dependency
to POM to put

JUnit on the classpath

● Maven provides support for automated unit testing with
JUnit

● Unit testing is included in the build lifecycle
○ Verifies that existing components work when other components

are added or changed

Execute the Maven
test phase $ mvn test

JUnit with Maven
● Maven requires all test-class names to contain Test
● Standard directory for test classes is src/test/java
● The test phase is mapped to the Surefire plugin
● Surefire will generate reports based on your test runs
● Reports are located in target/surefire-reports

Spring test support
● Spring has excellent test support providing:

○ IoC container caching
○ Dependency injection of test fixture instances / dependencies
○ Transaction management and rollback

● Spring (spring-test) integrates nicely with JUnit

@RunWith(SpringJUnit4ClassRunner.class)
//@ContextConfiguration //this will look for a file EventDaoTest-context.xml
@ContextConfiguration(locations={"classpath*:/META-INF/beans.xml"})
@Transactional
public class EventDaoTest
{
 @Autowired
 Private EventDao eventDao;

 @Test
 public void testSaveEvent(Event event)
 {
 }
}

1) Defines underlying test
framework

2) Defines location of Spring
config file

3) Makes class for
transactional testing

Autowires dependencies

Unit Testing Spring MVC Controllers
● To test your Spring MVC Controllers, use

ModelAndViewAssert combined with
MockHttpServletRequest, MockHttpSession, and so on from
the org.springframework.mock.web package

Controller

Client-sideServer-side

1. Instantiate
Controller and
inject mock/stub
dependencies

2. Execute with the
WebApplicationContext
and ResponseBody

3. Create client with
RESTTemplate and see
actual data

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration("my-servlet-context.xml")
public class MyWebTests {

 @Autowired
 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc =
 MockMvcBuilders.webAppContextSetup(this.wac).build();
 }
 // ...
}

Spring MVC - Server-side

public class MyWebTests {

 private MockMvc mockMvc;

 @Before
 public void setup() {
 this.mockMvc = MockMvcBuilders.standaloneSetup(
 new AccountController()).build();
 }
 // ...
}

With full Web Application Spring Configuration With controller-specific setup (more unit-like)

● Due to autowiring, find the correct @WebAppConfiguration
● MockMvc class provides testing methods for method,

headers, request, response etc.
● standaloneSetup will create WebApplicationContext with

default Spring configuration for a webapp

MockMvc usage
● perform() - does requests

● model() - access the returned model
● status() - for HTTP Status
● accept() - accept mime type
● For repeated actions, in standalone setup you can:

 @Test
 public void testReadId() throws Exception {
 this.mockMvc.perform(get("/read/1")
 .accept(MediaType.parseMediaType("text/html;charset=UTF-8")))
 .andExpect(status().isOk())
 .andExpect(content().contentType("text/html"))
 .andExpect(message.value("Message number 1 was hello"));
 }

standaloneSetup(new BaseController()) {
 .alwaysExpect(status().isOk())
 .alwaysExpect(content().contentType("application/json;charset=UTF-8"))
 .build()
}

Best practices
● One unit test for each tested method

○ Makes debugging easier
○ Easier to maintain

● Choose descriptive test method names
○ TestCase: Use the testXXX naming convention
○ Annotations: Use the method signature of the tested method

● Automate your test execution
○ If you add or change features, the old ones must still work
○ Also called regression testing

● Test more than the ”happy path”
○ Out-of-domain values
○ Boundary conditions

Advantages of unit testing

● Improves debugging
○ Easy to track down bugs

● Facilitates refactoring
○ Verifies that existing features still work while changing the code

structure
● Enables teamwork

○ Lets you deliver tested components without waiting for the
whole application to finish

● Promotes object oriented design
○ Requires your code to be divided in small, re-usable units

● Serving as developer documentation
○ Unit tests are samples that demonstrates usage of the API

Mocking Tests...

● We deliberately skip mocking in this course
● And integration tests
● Results in faster testing of the whole

system

● Not because we think its not useful, but
limitation of time

Resources

● Vincent Massol: JUnit in Action
○ Two free sample chapters
○ http://www.manning.com/massol

● JUnit home page (www.junit.org)
○ Articles and forum

● Spring documentation chapter 11
○ http://docs.spring.io/spring/docs/3.2.x/spring-

framework-reference/html/testing.html

