INF5750

Introduction to JavaScript and Node.js



Outline

Introduction to JavaScript
Language basics
Introduction to Node.|s

Tips and tools for working with JS and Node.js



What is JavaScript?

Built as scripting language for adding dynamic features to
Web pages

Originally developed for Netscape Navigator in 1995
Reverse engineered by MS in 1996 for |E as JScript

Submitted to ECMA for standardisation - first language
standard released in 1997 as ECMA-262 (ECMAScript)

ECMAScript is the specification - JavaScript is an Oracle
trademark



How is JS used?

e Client-side (e.g. browser)
e Scripting language for web pages

* 94, 7% of web sites use JS (w3techs.com)

e Server-side (e.g. node.js)
* Fastest growing (but still tiny) server-side language for web sites

e Other:

* Browser extensions, mobile apps (Cordova), scripting
applications (Adobe CS, OpenOffice++)


http://w3techs.com

JavaScript Engines

Support for (hew) language features varies slightly
Multiple javascript engines/interpreters exists:

e \/8 (Chrome and Node.js)

e Chakra (Edge)

e SpiderMonkey (Firefox)

e JavaScriptCore (Safari)

° +++



Key Features

High-level
Weakly typed
Object-oriented

Interpreted



High level

e High level of abstraction from the hardware
e No need to deal with memory etc

e Easier to develop and use across different platforms



Weakly typed

e Variable types are derived from the values they are
assigned

 No type safety or type checking

e Built-in types still exist («String», «Number» etc)



Object oriented

 JS is object oriented, but prototype-based - no real class
concept with inheritance etc

e All objects inherit from a prototype object

e More later (and next week)



Interpreted

e Not pre-compiled to byte or machine code

e Code is interpreted and executed by the JS engine at
runtime



Java and Javascript are similar like Car and Carpet
are similar

— Chris Heilmann



Basic language constructs

e Values and types
e Conditionals
e Functions

e \ariables

e Prototypes [more next week]



Values and types

e JS uses weak/dynamic typing - flexible, but potentially
more error-prone

e A variable can hold values of different types



Values and types

e Built-in types:
e pboolean
* number
e string
e null and undefined
* object
e Symbol

* Built-in types have properties and methods, e.g "hello world».toUpper()



Values and types

* The object type represent compound values

var anObject = {
firstName: "John",
lastName: "Doe"

¥

* Arrays and functions are special forms of objects



Values and types

e Comparing different value types requires type conversion:
* implicit conversion (coercion)
e explicit conversion
e false valuesin JS: "", 0, -1, NaN, null, undefined false
* Qperators:
e equality with coercion allowed: ==, =

e equality without coercion: ===, ==



Conditionals

o [f... elself... If...
e Switches

e Conditional operator: [condition] ? [if true] : [if false]



Functions

 Defines a scope (more in a minute)

¢ Functions as named variables

var adder = function(a, b) {
return a + b;

3
adder(1, 2); //= 3

 Immediately invoked function expressions

(function example() { console.log("Test"); }(O



Functions

var a = "global scope";
scopel();

function scopel() {
var b = "scope of scopel()";

function scopeZ2() {
var ¢ = "scope of scope2()";

¥

console.log(c); //ReferenceError



Variables

Variables and object properties must be valid identifiers
(a-z, A-Z, 0-9, 3, )

Declared variables belong to a function scope or global
scope

Scopes can be nested - variables are available to inner
SCOpes

Variable and function declarations are hoisted



Prototypes

 JS is object oriented, but does not have classes™ - uses
Property-based inheritance

e Every JS object has a property [[Prototype]] referencing
it’s prototype

e Prototype chain: when trying to access a property of an
object, that property will also be searched in all
consecutive prototypes of the object

* ES2015 introduces class, but only as syntic sugar



Asynchronous
programming

JS is single-threaded - I/O is asynchronous

Requirement that web pages are not blocked e.g. while
waiting for data to be returned over the network

Rely on callbacks, promises, events

More next week...



What is Node.|s?

Node.js is a JS runtime for running JS code server-side
Based on V8 engine from Chrome
Basic libraries included in Node.|s itself

npm package manager with 400 000+ libraries and
frameworks



What is Node.|s

e Most common use for node.|s is development of web
services

e Also be used for general scripting etc

e Demos:
e "Hello World"

e Using a library from npm



Node.]s HTTP server

e Node.|s comes with http library for http communication

e Example - receiving requests

e Frameworks would normally be used to abstract away
details of e.g. the http library



Useful hints/tools

CURL/Postman for HTTP requests
Debugging node.js with Chrome
Using "strict mode”

Using a code checker like jshint, eslint, etc



CURL/Postman

e CURL - https://qgithub.com/curl/curl

e Command line tool for making HTTP requests

e Use verbose mode to see details (-v or -vv)

e Postman - https://www.getpostman.com/

 Available as chrome extension, app etc

e GUI tool for interacting with API


https://github.com/curl/curl
https://www.getpostman.com/

Debugging node.|s

e Chrome can be used for debugging node.js:
1. Run node with "-- inspect" argument

2. Open chrome://inspect in Chrome

3. Select "Open dedicated DevTools for node.js"


chrome://inspect

strict mode

e Enabled by adding "use strict;" to your .js file

e Strict mode disallows "bad" or "uncertain" behaviour



Code checker

e Different code checkers available to check code quality
e Useful to make sure your code is consistent

e Examples: JSlint, JSHint, ESlint



Obligatory assignment 1

e http://www.uio.no/studier/emner/matnat/ifi/INF5750/h17/
Assignments/inf5750_assignment1.html



