
INF5750
Introduction to JavaScript and Node.js



Outline

• Introduction to JavaScript


• Language basics


• Introduction to Node.js


• Tips and tools for working with JS and Node.js



What is JavaScript?
• Built as scripting language for adding dynamic features to 

Web pages


• Originally developed for Netscape Navigator in 1995


• Reverse engineered by MS in 1996 for IE as JScript


• Submitted to ECMA for standardisation - first language 
standard released in 1997 as ECMA-262 (ECMAScript)


• ECMAScript is the specification - JavaScript is an Oracle 
trademark



How is JS used?
• Client-side (e.g. browser)


• Scripting language for web pages


• 94,7% of web sites use JS (w3techs.com)


• Server-side (e.g. node.js)


• Fastest growing (but still tiny) server-side language for web sites


• Other:


• Browser extensions, mobile apps (Cordova), scripting 
applications (Adobe CS, OpenOffice++)

http://w3techs.com


JavaScript Engines
• Support for (new) language features varies slightly


• Multiple javascript engines/interpreters exists:


• V8 (Chrome and Node.js)


• Chakra (Edge)


• SpiderMonkey (Firefox)


• JavaScriptCore (Safari)


• +++



Key Features

• High-level


• Weakly typed


• Object-oriented


• Interpreted



High level

• High level of abstraction from the hardware


• No need to deal with memory etc


• Easier to develop and use across different platforms



Weakly typed

• Variable types are derived from the values they are 
assigned


• No type safety or type checking 


• Built-in types still exist («String», «Number» etc)



Object oriented

• JS is object oriented, but prototype-based - no real class 
concept with inheritance etc


• All objects inherit from a prototype object


• More later (and next week)



Interpreted

• Not pre-compiled to byte or machine code


• Code is interpreted and executed by the JS engine at 
runtime



– Chris Heilmann

Java and Javascript are similar like Car and Carpet 
are similar



Basic language constructs

• Values and types


• Conditionals


• Functions


• Variables


• Prototypes [more next week]



Values and types

• JS uses weak/dynamic typing - flexible, but potentially 
more error-prone


• A variable can hold values of different types



Values and types
• Built-in types:


• boolean


• number


• string


• null and undefined


• object


• symbol


• Built-in types have properties and methods, e.g "hello world».toUpper()



Values and types

• The object type represent compound values


var anObject = {
firstName: "John", 
lastName: "Doe" 

}

• Arrays and functions are special forms of objects



Values and types
• Comparing different value types requires type conversion:


• implicit conversion (coercion)


• explicit conversion


• false values in JS: "", 0, -1, NaN, null, undefined false


• operators: 


• equality with coercion allowed: ==, !=


• equality without coercion: ===, !==



Conditionals

• If… else if… if…


• Switches


• Conditional operator: [condition] ? [if true] : [if false]



Functions
• Defines a scope (more in a minute) 

• Functions as named variables


var adder = function(a, b) {
return a + b;

}
adder(1, 2); //= 3

• Immediately invoked function expressions


(function example() { console.log("Test"); }()



Functions
var a = "global scope";
scope1();

function scope1() {
var b = "scope of scope1()";

function scope2() {
var c = "scope of scope2()";

}

console.log(c); //ReferenceError
}



Variables

• Variables and object properties must be valid identifiers 
(a-z, A-Z, 0-9, $, _)


• Declared variables belong to a function scope or global 
scope


• Scopes can be nested - variables are available to inner 
scopes


• Variable and function declarations are hoisted



Prototypes

• JS is object oriented, but does not have classes* - uses 
Property-based inheritance


• Every JS object has a property [[Prototype]] referencing 
it’s prototype


• Prototype chain: when trying to access a property of an 
object, that property will also be searched in all 
consecutive prototypes of the object


*ES2015 introduces class, but only as syntic sugar



Asynchronous 
programming

• JS is single-threaded - I/O is asynchronous


• Requirement that web pages are not blocked e.g. while 
waiting for data to be returned over the network


• Rely on callbacks, promises, events 


• More next week…



What is Node.js?

• Node.js is a JS runtime for running JS code server-side


• Based on V8 engine from Chrome


• Basic libraries included in Node.js itself


• npm package manager with 400 000+ libraries and 
frameworks



What is Node.js
• Most common use for node.js is development of web 

services


• Also be used for general scripting etc


• Demos:


• "Hello World"


• Using a library from npm



Node.js HTTP server

• Node.js comes with http library for http communication


• Example - receiving requests


• Frameworks would normally be used to abstract away 
details of e.g. the http library



Useful hints/tools

• CURL/Postman for HTTP requests


• Debugging node.js with Chrome


• Using "strict mode"


• Using a code checker like jshint, eslint, etc



CURL/Postman
• CURL - https://github.com/curl/curl


• Command line tool for making HTTP requests


• Use verbose mode to see details (-v or -vv)


• Postman - https://www.getpostman.com/


• Available as chrome extension, app etc


• GUI tool for interacting with API

https://github.com/curl/curl
https://www.getpostman.com/


Debugging node.js

• Chrome can be used for debugging node.js:


1. Run node with "-- inspect" argument


2. Open chrome://inspect in Chrome


3. Select "Open dedicated DevTools for node.js"

chrome://inspect


strict mode

• Enabled by adding "use strict;" to your .js file


• Strict mode disallows "bad" or "uncertain" behaviour



Code checker

• Different code checkers available to check code quality


• Useful to make sure your code is consistent


• Examples: JSlint, JSHint, ESlint



Obligatory assignment 1

• http://www.uio.no/studier/emner/matnat/ifi/INF5750/h17/
Assignments/inf5750_assignment1.html


