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What is JavaScript?

Built as scripting language for adding dynamic features to
Web pages

Originally developed for Netscape Navigator in 1995
Reverse engineered by MS in 1996 for |E as JScript

Submitted to ECMA for standardisation - first language
standard released in 1997 as ECMA-262 (ECMAScript)

ECMAScript is the specification - JavaScript is an Oracle
trademark



How is JS used?

e Client-side (e.g. browser)
e Scripting language for web pages

* 94, 7% of web sites use JS (w3techs.com)

e Server-side (e.g. node.js)
* Fastest growing (but still tiny) server-side language for web sites

e Other:

* Browser extensions, mobile apps (Cordova), scripting
applications (Adobe CS, OpenOffice++)


http://w3techs.com

JavaScript Engines

Support for (hew) language features varies slightly
Multiple javascript engines/interpreters exists:

e \/8 (Chrome and Node.js)

e Chakra (Edge)

e SpiderMonkey (Firefox)

e JavaScriptCore (Safari)

° +++



Key Features

High-level
Weakly typed
Object-oriented

Interpreted



High level

e High level of abstraction from the hardware
e No need to deal with memory etc

e Easier to develop and use across different platforms



Weakly typed

e Variable types are derived from the values they are
assigned

 No type safety or type checking

e Built-in types still exist («String», «Number» etc)



Object oriented

 JS is object oriented, but prototype-based - no real class
concept with inheritance etc

e All objects inherit from a prototype object

e More later (and next week)



Interpreted

e Not pre-compiled to byte or machine code

e Code is interpreted and executed by the JS engine at
runtime



Java and Javascript are similar like Car and Carpet
are similar

— Chris Heilmann



Basic language constructs

e Values and types
e Conditionals
e Functions

e \ariables

e Prototypes [more next week]



Values and types

e JS uses weak/dynamic typing - flexible, but potentially
more error-prone

e A variable can hold values of different types



Values and types

e Built-in types:
e pboolean
* number
e string
e null and undefined
* object
e Symbol

* Built-in types have properties and methods, e.g "hello world».toUpper()



Values and types

* The object type represent compound values

var anObject = {
firstName: "John",
lastName: "Doe"

¥

* Arrays and functions are special forms of objects



Values and types

e Comparing different value types requires type conversion:
* implicit conversion (coercion)
e explicit conversion
e false valuesin JS: "", 0, -1, NaN, null, undefined false
* Qperators:
e equality with coercion allowed: ==, =

e equality without coercion: ===, ==



Conditionals

o [f... elself... If...
e Switches

e Conditional operator: [condition] ? [if true] : [if false]



Functions

 Defines a scope (more in a minute)

¢ Functions as named variables

var adder = function(a, b) {
return a + b;

3
adder(1, 2); //= 3

 Immediately invoked function expressions

(function example() { console.log("Test"); }(O



Functions

var a = "global scope";
scopel();

function scopel() {
var b = "scope of scopel()";

function scopeZ2() {
var ¢ = "scope of scope2()";

¥

console.log(c); //ReferenceError



Variables

Variables and object properties must be valid identifiers
(a-z, A-Z, 0-9, 3, )

Declared variables belong to a function scope or global
scope

Scopes can be nested - variables are available to inner
SCOpes

Variable and function declarations are hoisted



Prototypes

 JS is object oriented, but does not have classes™ - uses
Property-based inheritance

e Every JS object has a property [[Prototype]] referencing
it’s prototype

e Prototype chain: when trying to access a property of an
object, that property will also be searched in all
consecutive prototypes of the object

* ES2015 introduces class, but only as syntic sugar



Asynchronous
programming

JS is single-threaded - I/O is asynchronous

Requirement that web pages are not blocked e.g. while
waiting for data to be returned over the network

Rely on callbacks, promises, events

More next week...



What is Node.|s?

Node.js is a JS runtime for running JS code server-side
Based on V8 engine from Chrome
Basic libraries included in Node.|s itself

npm package manager with 400 000+ libraries and
frameworks



What is Node.|s

e Most common use for node.|s is development of web
services

e Also be used for general scripting etc

e Demos:
e "Hello World"

e Using a library from npm



Node.]s HTTP server

e Node.|s comes with http library for http communication

e Example - receiving requests

e Frameworks would normally be used to abstract away
details of e.g. the http library



Useful hints/tools

CURL/Postman for HTTP requests
Debugging node.js with Chrome
Using "strict mode”

Using a code checker like jshint, eslint, etc



CURL/Postman

e CURL - https://qgithub.com/curl/curl

e Command line tool for making HTTP requests

e Use verbose mode to see details (-v or -vv)

e Postman - https://www.getpostman.com/

 Available as chrome extension, app etc

e GUI tool for interacting with API


https://github.com/curl/curl
https://www.getpostman.com/

Debugging node.|s

e Chrome can be used for debugging node.js:
1. Run node with "-- inspect" argument

2. Open chrome://inspect in Chrome

3. Select "Open dedicated DevTools for node.js"


chrome://inspect

strict mode

e Enabled by adding "use strict;" to your .js file

e Strict mode disallows "bad" or "uncertain" behaviour



Code checker

e Different code checkers available to check code quality
e Useful to make sure your code is consistent

e Examples: JSlint, JSHint, ESlint



Obligatory assignment 1

e http://www.uio.no/studier/emner/matnat/ifi/INF5750/h17/
Assignments/inf5750_assignment1.html



